Skip to main content

Advertisement

Log in

One-Step Purification and Porin Transport Activity of the Major Outer Membrane Proteins P2 from Haemophilus influenzae, FomA from Fusobacterium nucleatum and PorB from Neisseria meningitidis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial porins are major outer membrane proteins that function as essential solute transporters between the bacteria and the extracellular environment. Structural features of porins are also recognized by eukaryotic cell receptors involved in innate and adaptive immunity. To better investigate the function of porins, proper refolding is necessary following purification from inclusion bodies [1, 2]. Using a single-step size exclusion chromatographic method, we have purified three major porins from pathogenic bacteria, the OmpP2 (P2) from Haemophilus influenzae, FomA from Fusobacterium nucleatum and PorB from Neisseria meningitidis, at high yield and report their unique solute transport activity with size exclusion limit. Furthermore, we have optimized their purification method and achieved improvement of their thermostability for facilitating functional and structural analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buchanan, S. K. (1999). Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. Current Opinion in Structural Biology, 9, 455–461.

    Article  CAS  Google Scholar 

  2. Otzen, D. E., & Andersen, K. K. (2013). Folding of outer membrane proteins. Archives of Biochemistry and Biophysics, 531, 34–43.

    Article  CAS  Google Scholar 

  3. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67, 593–656.

    Article  CAS  Google Scholar 

  4. Zeth, K., & Thein, M. (2010). Porins in prokaryotes and eukaryotes: common themes and variations. The Biochemical Journal, 431, 13–22.

    Article  CAS  Google Scholar 

  5. Platt, A., Macleod, H., Massari, P., Liu, X., & Wetzler, L. (2013). In vivo and in vitro characterization of the immune stimulating activity of the neisserial porin PorB. PloS One, 8, e82171.

    Article  Google Scholar 

  6. Biswas, A., Banerjee, P., & Biswas, T. (2009). Porin of Shigella dysenteriae directly promotes toll-like receptor 2-mediated CD4+ T cell survival and effector function. Molecular Immunology, 46, 3076–3085.

    Article  CAS  Google Scholar 

  7. Watt, J. P., Wolfson, L. J., O'Brien, K. L., Henkle, E., Deloria-Knoll, M., McCall, N., et al. (2009). Burden of disease caused by Haemophilus influenzae type b in children younger than 5 years: global estimates. Lancet, 374, 903–911.

    Article  Google Scholar 

  8. Pullen, J. K., Liang, S. M., Blake, M. S., Mates, S., & Tai, J. Y. (1995). Production of Haemophilus influenzae type-b porin in Escherichia coli and its folding into the trimeric form. Gene, 152, 85–88.

    Article  CAS  Google Scholar 

  9. Andersen, C., Maier, E., Kemmer, G., Blass, J., Hilpert, A.-K., Benz, R., & Reidl, J. (2003). Porin OmpP2 of Haemophilus influenzae shows specificity for nicotinamide-derived nucleotide substrates. The Journal of Biological Chemistry, 278, 24269–24276.

    Article  CAS  Google Scholar 

  10. Galdiero, M., Galdiero, M., Finamore, E., Rossano, F., Gambuzza, M., Catania, M. R., et al. (2004). Haemophilus influenzae porin induces Toll-like receptor 2-mediated cytokine production in human monocytes and mouse macrophages. Infection and Immunity, 72, 1204–1209.

    Article  CAS  Google Scholar 

  11. Galdiero, S., Vitiello, M., Amodeo, P., D'Isanto, M., Cantisani, M., Pedone, C., & Galdiero, M. (2006). Structural requirements for proinflammatory activity of porin P2 Loop 7 from Haemophilus influenzae. Biochemistry, 45, 4491–4501.

    Article  CAS  Google Scholar 

  12. Vitiello, M., Finamore, E., Cantisani, M., Bevilacqua, P., Incoronato, N., Falanga, A., et al. (2011). P2 porin and loop L7 from Haemophilus influenzae modulate expression of IL-6 and adhesion molecules in astrocytes. Microbiology and Immunology, 55, 347–356.

    Article  CAS  Google Scholar 

  13. Cantisani, M., Vitiello, M., Falanga, A., Finamore, E., Galdiero, M., & Galdiero, S. (2012). Peptides complementary to the active loop of porin P2 from Haemophilus influenzae modulate its activity. International Journal of Nanomedicine, 7, 2361–2371.

    CAS  Google Scholar 

  14. Signat, B., Roques, C., Poulet, P., & Duffaut, D. (2011). Fusobacterium nucleatum in periodontal health and disease. Current Issues in Molecular Biology, 13, 25–36.

    CAS  Google Scholar 

  15. Pocanschi, C. L., Apell, H.-J., Puntervoll, P., Høgh, B., Jensen, H. B., Welte, W., & Kleinschmidt, J. H. (2006). The major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways. Journal of Molecular Biology, 355, 548–561.

    Article  CAS  Google Scholar 

  16. Puntervoll, P., Ruud, M., Bruseth, L. J., Kleivdal, H., Høgh, B. T., Benz, R., & Jensen, H. B. (2002). Structural characterization of the fusobacterial non-specific porin FomA suggests a 14-stranded topology, unlike the classical porins. Microbiology, 148, 3395–3403.

    CAS  Google Scholar 

  17. Kleivdal, H., Puntervoll, P., & Jensen, H. B. (2001). Topological investigations of the FomA porin from Fusobacterium nucleatum and identification of the constriction loop L6. Microbiology, 147, 1059–1067.

    CAS  Google Scholar 

  18. Toussi, D. N., Liu, X., & Massari, P. (2012). The FomA porin from Fusobacterium nucleatum is a Toll-like receptor 2 agonist with immune adjuvant activity. Clinical and Vaccine Immunology, 19, 1093–1101.

    Article  CAS  Google Scholar 

  19. Massari, P., Visintin, A., Gunawardana, J., Halmen, K. A., King, C. A., Golenbock, D. T., & Wetzler, L. M. (2006). Meningococcal porin PorB binds to TLR2 and requires TLR1 for signaling. Journal of Immunology, 176, 2373–2380.

    Article  CAS  Google Scholar 

  20. Jadhav, S. R., Zheng, Y., Michael Garavito, R., & Mark Worden, R. (2008). Functional characterization of PorB class II porin from Neisseria meningitidis using a tethered bilayer lipid membrane. Biosensors and Bioelectronics, 24, 831–835.

    Article  CAS  Google Scholar 

  21. Tanabe, M., Nimigean, C. M., & Iverson, T. M. (2010). Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB. Proceedings of the National Academy of Sciences, 107, 6811–6816.

    Article  CAS  Google Scholar 

  22. Kattner, C., Toussi, D. N., Zaucha, J., Wetzler, L. M., Rüppel, N., Zachariae, U., et al. (2014). Crystallographic analysis of Neisseria meningitidis PorB extracellular loops potentially implicated in TLR2 recognition. Journal of Structural Biology, 185, 440–447.

    Article  CAS  Google Scholar 

  23. Toussi, D. N., Carraway, M., Wetzler, L. M., Lewis, L. A., Liu, X., & Massari, P. (2012). The amino acid sequence of Neisseria lactamica PorB surface-exposed loops influences Toll-like receptor 2-dependent cell activation. Infection and Immunity, 80, 3417–3428.

    Article  CAS  Google Scholar 

  24. Tanabe, M., & Iverson, T. M. (2009). Expression, purification and preliminary X-ray analysis of the Neisseria meningitidis outer membrane protein PorB. Acta Crystallographica. Section F. Structural Biology and Crystallization Communications, 65, 996–1000.

    Article  CAS  Google Scholar 

  25. Becktel, W. J., & Schellman, J. A. (1987). Protein stability curves. Biopolymers, 26, 1859–1877.

    Article  CAS  Google Scholar 

  26. Olesky, M., Zhao, S., Rosenberg, R. L., & Nicholas, R. A. (2006). Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. Journal of Bacteriology, 188, 2300–2308.

    Article  CAS  Google Scholar 

  27. Tate, C. G. (2012). A crystal clear solution for determining G-protein-coupled receptor structures. Trends in Biochemical Sciences, 37, 343–352.

    Article  CAS  Google Scholar 

  28. Dupeux, F., Röwer, M., Seroul, G., Blot, D., & Márquez, J. A. (2011). A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Crystallographica. Section D. Biological Crystallography, 67, 915–919.

    Article  CAS  Google Scholar 

  29. Vachon, V., Lyew, D. J., & Coulton, J. W. (1985). Transmembrane permeability channels across the outer membrane of Haemophilus influenzae type b. Journal of Bacteriology, 162, 918–924.

    CAS  Google Scholar 

  30. Vachon, V., Laprade, R., & Coulton, J. W. (1986). Properties of the porin of Haemophilus influenzae type b in planar lipid bilayer membranes. Biochimica et Biophysica Acta, 861, 74–82.

    Article  CAS  Google Scholar 

  31. Kleivdal, H., Benz, R., Tommassen, J., & Jensen, H. B. (1999). Identification of positively charged residues of FomA porin of Fusobacterium nucleatum which are important for pore function. European Journal of Biochemistry, 260, 818–824.

    Article  CAS  Google Scholar 

  32. Minetti, C. A., Tai, J. Y., Blake, M. S., Pullen, J. K., Liang, S. M., & Remeta, D. P. (1997). Structural and functional characterization of a recombinant PorB class 2 protein from Neisseria meningitidis. Conformational stability and porin activity. The Journal of Biological Chemistry, 272, 10710–10720.

    Article  CAS  Google Scholar 

  33. Bolstad, A. I., Høgh, B. T., & Jensen, H. B. (1995). Molecular characterization of a 40-kDa outer membrane protein, FomA, of Fusobacterium periodonticum and comparison with Fusobacterium nucleatum. Oral Microbiology and Immunology, 10, 257–264.

    Article  CAS  Google Scholar 

  34. Anbazhagan, V., Vijay, N., Kleinschmidt, J. H., & Marsh, D. (2008). Protein-lipid interactions with Fusobacterium nucleatum major outer membrane protein FomA: spin-label EPR and polarized infrared spectroscopy. Biochemistry, 47, 8414–8423.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mika Jormakka (Centenary Institute, The University of Sydney) and Deana Toussi (Boston University) for critically reading the manuscript. We also thank Angelika Schierhorn (Martin Luther University) for mass spectrometry. This work was supported by the Bundesministerium für Bildung und Forschung (BMBF) ZIK program (FKZ 03Z2HN21) and ERDF (1241090001) (MT) by NIH grant R01 AI40944-01 (PM). The crystallographic data were tested at Swiss Light Source (SLS, Villingen) with support by the funding from the European Community's 7th Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement no. 283570, project ID BioStructx_5450). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Tanabe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Data 1

(DOCX 204 kb)

Supplemental Data 2

(DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kattner, C., Pfennig, S., Massari, P. et al. One-Step Purification and Porin Transport Activity of the Major Outer Membrane Proteins P2 from Haemophilus influenzae, FomA from Fusobacterium nucleatum and PorB from Neisseria meningitidis . Appl Biochem Biotechnol 175, 2907–2915 (2015). https://doi.org/10.1007/s12010-014-1473-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1473-2

Keywords

Navigation