Skip to main content
Log in

Physiological and Molecular Changes in Barley and Wheat Under Salinity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, it was aimed to compare salinity-induced changes in barley (Hordeum vulgare L. cv. Bornova-92) and bread wheat (Triticum aestivum L. cv. Gerek-79). Seeds were germinated under saline conditions (0, 50, 100, 250, and 500 mM NaCl) for 2 days and recovered under non-saline conditions for 2 days. At the end of the salt treatment, germination, water content (WC), total soluble protein content, and catalase (CAT, EC 1.11.1.6) activity were affected in both species, while superoxide dismutase (SOD, EC 1.15.1.1) activity was affected in barley. Salinity affected WC, protein content, and CAT activity in both species, while it affected germination in barley and affected fresh weight and SOD activity in wheat after recovery. Physiological responses of both species were correlated. Expression of α-tubulin, Atls1, and Lls1 genes was down-regulated in barley after 250 mM NaCl treatment. HVA1 gene was highly (more than 50-fold) stimulated by salinity in barley. However, α-tubulin and Atls1 genes were down-regulated, and Lls1 gene was up-regulated in wheat after recovery from 250-mM NaCl treatment. Increase in HVA1 expression was not significant in wheat. The expression profiles of barley and wheat under salinity are different, and barley tended to regulate gene expression faster than wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh Kannan, P., Deepa, S., Kant, S. V., & Rengasamy, R. (2013). Applied Biochemistry and Biotechnology, 171, 1925–1932.

    Article  Google Scholar 

  2. Sairam, R. K., & Srivastava, G. C. (2002). Plant Science, 162, 897–904.

    Article  CAS  Google Scholar 

  3. Khan, F., Hakeem, K. R., Siddiqi, T. O., & Ahmad, A. (2013). Applied Biochemistry and Biotechnology, 170, 257–272.

    Article  CAS  Google Scholar 

  4. Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Journal of Experimental Botany, 53, 1331–1341.

    Article  CAS  Google Scholar 

  5. Bartosz, G. (1997). Acta Physiologiae Plantarum, 19, 47–64.

    Article  CAS  Google Scholar 

  6. Bagci, S. A., Ekiz, H., & Yilmaz, A. (2003). Turkish Journal of Agriculture and Forestry, 27, 253–260.

    Google Scholar 

  7. Shahbaz, M., & Ashraf, M. (2013). CRC Critical Reviews Plant Science, 32, 237–249.

    Article  Google Scholar 

  8. Morris, P. C., & Bryce, J. H. (2000). In P. C. Morris & J. H. Bryce (Eds.), Cereal biotechnology (pp. 1–17). Cambridge: Woodhead.

    Chapter  Google Scholar 

  9. Munns, R., & Tester, M. (2008). Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  10. Munns, R., James, R. A., & Lauchli, A. (2006). Journal of Experimental Botany, 57, 1025–1043.

    Article  CAS  Google Scholar 

  11. Sairam, R. K., & Tyagi, A. (2004). Current Science India, 86, 407–421.

    CAS  Google Scholar 

  12. Bartels, D., & Sunkars, R. (2005). CRC Critical Reviews Plant Science, 24, 23–58.

    Article  CAS  Google Scholar 

  13. Saadia, M., Jamil, A., Ashraf, M., & Akram, N. A. (2013). Applied Biochemistry and Biotechnology, 170, 980–987.

    Article  CAS  Google Scholar 

  14. Walia, H., Wilson, C., Ismail, A. M., Close, T. J., & Cui, X. (2009). BMC Genomics, 10, 398.

    Article  Google Scholar 

  15. Kant, S., Kant, P., Raveh, E., & Barak, S. (2006). Plant, Cell and Environment, 29, 1220–1234.

    Article  CAS  Google Scholar 

  16. Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J. K., & Shinozaki, K. (2004). Plant Physiology, 135, 1697–1709.

    Article  CAS  Google Scholar 

  17. Ozturk, Z. N., Talame, V., Deyholos, M., Michalowski, C. B., Galbraith, D. W., Gozukirmizi, N., Tuberosa, R., & Bohnert, H. J. (2002). Plant Molecular Biology, 48, 551–573.

    Article  CAS  Google Scholar 

  18. Qian, G., Han, Z., Zhao, T., Deng, G., Pan, Z., & Yu, M. (2007). Australian Journal of Agricultural Research, 58, 425–431.

    Article  CAS  Google Scholar 

  19. Mutlu, S., Atici, O., & Nalbantoglu, B. (2009). Biologia Plantarum, 53, 334–338.

    Article  CAS  Google Scholar 

  20. Akkaya, M. S., & Buyukunal-Bal, E. B. (2004). Euphytica, 135, 179–185.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Marakli, S., Yilmaz, S., & Gozukirmizi, N. (2012). Biotechnology and Biotechnological Equipment, 26, 3451–3456.

    Article  CAS  Google Scholar 

  23. Livak, K. J., & Schmittgen, T. D. (2001). Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  24. Mahajan, S., & Tuteja, N. (2005). Archives of Biochemistry and Biophysics, 444, 139–158.

    Article  CAS  Google Scholar 

  25. Okcu, G., Kaya, M. D., & Atak, M. (2005). Turkish Journal of Agriculture and Forestry, 29, 237–242.

    Google Scholar 

  26. Al-Karaki, G. N. (2007). Journal of Plant Nutrition, 24, 511–522.

    Article  Google Scholar 

  27. Ajmal Khan, M., Ungar, I. A., & Showalter, A. M. (2000). Journal of Arid Environments, 45, 73–84.

    Article  Google Scholar 

  28. Bradley, P. H., & Morris, J. T. (1991). Journal of Experimental Botany, 42, 1525–1532.

    Article  CAS  Google Scholar 

  29. Ashraf, M., & Waheed, A. (1993). Journal Agronomy Soil Science, 170, 103–112.

    CAS  Google Scholar 

  30. Sen, A., & Alikamanoglu, S. (2011). Fresenius Environmental Bulletin, 20, 489–495.

    CAS  Google Scholar 

  31. Witzel, K., Matros, A., Strickert, M., Kaspar, S., Peukert, M., Muhling, K. H., Borner, A., & Mock, H. P. (2013). Molecular Plant, 7, 336–355.

    Article  Google Scholar 

  32. Hakeem, K. R., Khan, F., Chandna, R., Siddiqui, T. O., & Iqbal, M. (2012). Applied Biochemistry and Biotechnology, 168, 2309–2329.

    Article  CAS  Google Scholar 

  33. Ashraf, M. (2009). Biotechnology Advances, 27, 84–93.

    Article  CAS  Google Scholar 

  34. Sairam, R. K., Srivastava, G. C., Agarwal, S., & Meena, R. C. (2005). Biologia Plantarum, 49, 85–91.

    Article  CAS  Google Scholar 

  35. Mandhania, S., Madan, S., & Sawhney, V. (2006). Biologia Plantarum, 50, 227–231.

    Article  CAS  Google Scholar 

  36. Maksimovic, J. D., Zhang, J., Zeng, F., Zivanovic, B. D., Shabala, L., Zhou, M., & Shabala, S. (2013). Plant and Soil, 365, 141–135.

    Article  CAS  Google Scholar 

  37. Ueda, A., Kathiresan, A., Bennett, J., & Takabe, T. (2006). Theoretical and Applied Genetics, 112, 1286–1294.

    Article  CAS  Google Scholar 

  38. Nicot, N., Hausman, J. F., Hoffmann, L., & Evers, D. (2005). Journal of Experimental Botany, 56, 2907–2914.

    Article  CAS  Google Scholar 

  39. Wan, H., Zhao, Z., Qian, C., Sui, Y., & Malik, A. A. (2010). Analytical Biochemistry, 399, 257–261.

    Article  CAS  Google Scholar 

  40. Suprunova, T., Krugman, T., Fahima, T., Chen, G., Shams, I., Korol, A., & Nevo, E. (2004). Plant, Cell & Environment, 27, 1297–1308.

    Article  CAS  Google Scholar 

  41. Hong, B., Barg, R., & Ho, T. D. (1992). Plant Molecular Biology, 18, 663–674.

    Article  CAS  Google Scholar 

  42. Rohila, J. S., Jain, R. K., & Wu, R. (2002). Plant Science, 163, 525–532.

    Article  CAS  Google Scholar 

  43. Wojcik-Jagła, M., Rapacz, M., Barcik, W., & Janowiak, F. (2012). Acta Physiologiae Plantarum, 34, 2069–2078.

    Article  Google Scholar 

  44. Roche, J., Hewezi, T., Bouniols, A., & Gentzbittel, L. (2009). Plant Physiology and Biochemistry, 47, 139–145.

    Article  CAS  Google Scholar 

  45. Tang, C., Wang, X., Duan, X., Wang, X., Huang, L., & Kang, Z. (2013). Journal of Experimental Botany, 64, 2955–2969.

    Article  CAS  Google Scholar 

  46. In, O., Berberich, T., Romdhane, S., & Feierabend, J. (2005). Planta, 220, 941–950.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Fund of Istanbul University under grants [28371, 30235].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslihan Temel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temel, A., Gozukirmizi, N. Physiological and Molecular Changes in Barley and Wheat Under Salinity. Appl Biochem Biotechnol 175, 2950–2960 (2015). https://doi.org/10.1007/s12010-014-1464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1464-3

Keywords

Navigation