Skip to main content
Log in

Influence of Azo Dye Concentration on Activated Sludge Bacterial Community in the Presence of Functionalized Polyurethane Foam

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilized quinones exhibit good catalytic performance in the biodecolorization of azo dyes. However, in practical activated sludge systems, little is known about the effect of azo dye concentration on microbial communities in the presence of immobilized quinones. 454 Pyrosequencing was used to investigate structural changes and to determine the key microorganisms involved in Reactive Red X-3B decolorization in the presence of anthraquinone-2-sulfonate immobilized on polyurethane foam (AQS-PUF). Our results show that the AQS-PUF-supplemented system exhibited better stability and decolorization performance during a 30-day run than polyurethane-foam-only (PUF-supplemented) and control systems. Analysis of pyrosequencing data showed that the AQS-PUF-supplemented system had the highest bacterial diversity, followed by the control and PUF-supplemented systems during decolorization. Reactive Red X-3B and AQS-PUF significantly influenced bacterial communities at the class level: Erysipelotrichia and the most dominant Deltaproteobacteria showed significant positive correlations with Reactive Red X-3B, while unclassified Firmicutes were found to be significantly correlated with AQS-PUF. At the genus level, Desulfomicrobium, which represents 8–44 % of the total population, displayed a significant positive correlation with Reactive Red X-3B. Some bacteria, including Desulfovibrio, Shewanella, and Clostridium with relative abundances of less than 6 %, were positively correlated with AQS-PUF. These findings provide a novel insight into the changes that occur in the bacterial community during immobilized AQS-mediated decolorization. Less abundant quinone-reducing bacteria play important roles in accelerating the effect of AQS-PUF on biodecolorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jin, X., Liu, G., Xu, Z., & Tao, W. (2007). Applied Microbiology and Biotechnology, 74, 239–243.

    Article  CAS  Google Scholar 

  2. dos Santos, A. B., Cervantes, F. J., & van Lier, J. B. (2007). Bioresource Technology, 98, 2369–2385.

    Article  Google Scholar 

  3. Costa, M. C., Mota, S., Nascimento, R. F., & dos Santos, A. B. (2010). Bioresource Technology, 101, 105–110.

    Article  CAS  Google Scholar 

  4. da Silva, M. E. R., Firmino, P. I. M., & dos Santos, A. B. (2012). Bioresource Technology, 121, 1–7.

    Article  Google Scholar 

  5. Martinez, C. M., Alvarez, L. H., Celis, L. B., & Cervantes, F. J. (2013). Applied Microbiology and Biotechnology, 97, 10293–10308.

    Article  CAS  Google Scholar 

  6. Alvarez, L. H., Perez-Cruz, M. A., Rangel-Mendez, J. R., & Cervantes, F. J. (2010). Journal of Hazardous Materials, 184, 268–272.

    Article  CAS  Google Scholar 

  7. Cervantes, F. J., Garcia-Espinosa, A., Moreno-Reynosa, M. A., & Rangel-Mendez, J. R. (2010). Environmental Science & Technology, 44, 1747–1753.

    Article  CAS  Google Scholar 

  8. Lu, H., Zhou, J. T., Wang, J., Si, W. L., Teng, H., & Liu, G. F. (2010). Bioresource Technology, 101, 7196–7199.

    Google Scholar 

  9. Cervantes, F. J., Martínez, C. M., Gonzalez-Estrella, J., Márquez, A., & Arriaga, S. (2013). Applied Microbiology and Biotechnology, 97, 2671–2679.

    Article  CAS  Google Scholar 

  10. Li, L. H., Wang, J., Zhou, J. T., Yang, F. L., Jin, C. Y., Qu, Y. Y., Li, A., & Zhang, L. (2008). Bioresource Technology, 99, 6908–6916.

    Article  CAS  Google Scholar 

  11. Yuan, S. Z., Lu, H., Wang, J., Zhou, J. T., Wang, Y., & Liu, G. F. (2012). Process Biochemistry, 47, 312–318.

    Article  CAS  Google Scholar 

  12. Garcia, S. L., Jangid, K., Whitman, W. B., & Das, K. C. (2011). Bioresource Technology, 102, 7249–7256.

    Article  CAS  Google Scholar 

  13. Lu, L., Xing, D. F., & Ren, N. Q. (2012). Water Research, 46, 2425–2434.

    Article  CAS  Google Scholar 

  14. Xu, M. Y., Chen, X. J., Qiu, M. D., Zeng, X. W., Xu, J., Deng, D. Y., Sun, G. P., Li, X., & Guo, J. (2012). PLoS One, 7, e30439.

    Article  CAS  Google Scholar 

  15. Wang, J., Lu, H., Zhou, Y., Song, Y., Liu, G., & Feng, Y. (2013). Journal of Hazardous Materials, 252–253, 227–232.

    Article  Google Scholar 

  16. Berry, D., Mahfoudh, K. B., Wagner, M., & Loy, A. (2011). Applied and Environmental Microbiology, 77, 7846–7849.

    Article  CAS  Google Scholar 

  17. Emilia Rios-Del Toro, E., Celis, L. B., Cervantes, F. J., & Rangel-Mendez, J. R. (2013). Journal of Hazardous Materials, 260, 967–974.

    Article  CAS  Google Scholar 

  18. Liu, M. M., Zhang, Y., Ding, R., Gao, Y. X., & Yang, M. (2013). Applied Microbiology and Biotechnology, 97, 8805–8812.

    Article  CAS  Google Scholar 

  19. Wang, X. H., Hu, M., Xia, Y., Wen, X. H., & Ding, K. (2012). Applied and Environmental Microbiology, 78, 7042–7047.

    Article  CAS  Google Scholar 

  20. Yang, C., Zhang, W., Liu, R. H., Li, Q., Li, B. B., Wang, S. F., Song, C. J., Qiao, C. L., & Mulchandani, A. (2011). Environmental Science & Technology, 45, 7408–7415.

    Article  CAS  Google Scholar 

  21. Jong, B. C., Liew, P. W., Lebai Juri, M., Kim, B. H., Mohd Dzomir, A. Z., Leo, K. W., & Awang, M. R. (2011). Letters in Applied Microbiology, 53, 660–667.

    Article  CAS  Google Scholar 

  22. Stauffert, M., Cravo-Laureau, C., Jézéquel, R., Barantal, S., Cuny, P., Gilbert, F., Cagnon, C., Militon, C., Amouroux, D., Mahdaoui, F., Bouyssiere, B., Stora, G., Merlin, F. X., & Duran, R. (2013). PLoS One, 8, e65347.

    Article  CAS  Google Scholar 

  23. Cervantes, F. J., de Bok, F. A. M., Duong-Dac, T., Stams, A. J. M., Lettinga, G., & Field, J. A. (2002). Environmental Microbiology, 4, 51–57.

    Article  CAS  Google Scholar 

  24. Hong, Y. G., & Gu, J. D. (2010). Applied Microbiology and Biotechnology, 88, 637–643.

    Article  CAS  Google Scholar 

  25. Wrighton, K. C., Agbo, P., Warnecke, F., Weber, K. A., Brodie, E. L., DeSantis, T. Z., Hugenholtz, P., Andersen, G. L., & Coates, J. D. (2008). The ISME Journal, 2, 1146–1156.

    Article  CAS  Google Scholar 

  26. More, T. T., Yan, S., John, R. P., Tyagi, R. D., & Surampalli, R. Y. (2012). Bioresource Technology, 121, 304–311.

    Article  CAS  Google Scholar 

  27. Dafale, N., Agrawal, L., Kapley, A., Meshram, S., Purohit, H., & Wate, S. (2010). Bioresource Technology, 101, 476–484.

    Article  CAS  Google Scholar 

  28. Diniz, P. E., Lopes, A. T., Lino, A. R., & Serralheiro, M. L. (2002). Applied Biochemistry and Biotechnology, 97, 147–163.

    Article  CAS  Google Scholar 

  29. Zablocka-Godlewska, E., Przystaś, W., & Grabińska-Sota, E. (2012). Water, Air, and Soil Pollution, 223, 5259–5266.

    Article  CAS  Google Scholar 

  30. Cheng, S. A., Xing, D. F., Call, D. F., & Logan, B. E. (2009). Environmental Science & Technology, 43, 3953–3958.

    Article  CAS  Google Scholar 

  31. Granhall, U., Welsh, A., Throbäck, I. N., Hjort, K., Hansson, M., & Hallin, S. (2010). Journal of Industrial Microbiology & Biotechnology, 37, 1061–1069.

    Article  CAS  Google Scholar 

  32. Navarro-Noya, Y. E., Suárez-Arriaga, M. C., Rojas-Valdes, A., Montoya-Ciriaco, N. M., Gómez-Acata, S., Fernández-Luqueño, F., & Dendooven, L. (2013). Microbial Ecology, 66, 19–29.

    Article  Google Scholar 

  33. Kostka, J. E., Dalton, D. D., Skelton, H., Dollhopf, S., & Stucki, J. W. (2002). Applied and Environmental Microbiology, 68, 6256–6262.

    Article  CAS  Google Scholar 

  34. Rismani-Yazdi, H., Christy, A. D., Dehority, B. A., Morrison, M., Yu, Z., & Tuovinen, O. H. (2007). Biotechnology and Bioengineering, 97, 1398–1407.

    Article  CAS  Google Scholar 

  35. Sani, R. K., Peyton, B. M., Dohnalkova, A., & Amonette, J. E. (2005). Environmental Science & Technology, 39, 2059–2066.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 21077019 and 51278080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Wang, J., Lu, S. et al. Influence of Azo Dye Concentration on Activated Sludge Bacterial Community in the Presence of Functionalized Polyurethane Foam. Appl Biochem Biotechnol 175, 2574–2588 (2015). https://doi.org/10.1007/s12010-014-1452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1452-7

Keywords

Navigation