Skip to main content
Log in

Effect of Induced Polyploidy on Some Biochemical Parameters in Cannabis sativa L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study is aimed at testing the efficiency of colchicine on inducing polyploidy in Cannabis sativa L. and investigation of effects of polyploidy induction on some primary and secondary metabolites. Shoot tips were treated with three different concentrations of colchicine (0, 0.1, 0.2 % w/v) for 24 or 48 h. The biggest proportion of the almost coplanar tetraploids (43.33 %) and mixoploids (13.33 %) was obtained from the 24-h treatment in 0.2 and 0.1 % w/v, respectively. Colchicine with 0.2 % concentration and 48 h duration was more destructive than 24 h. The ploidy levels were screened with flow cytometry. The biochemical analyses showed that reducing sugars, soluble sugars, total protein, and total flavonoids increased significantly in mixoploid plants compared with tetraploid and diploid plants. Tetraploid plants had a higher amount of total proteins, total flavonoids, and starch in comparison with control plants. The results showed that polyploidization could increase the contents of tetrahydrocannabinol in mixoploid plants only, but tetraploid plants had lower amounts of this substance in comparison with diploids. Also, we found such changes in protein concentration in electrophoresis analysis. In overall, our study suggests that tetraploidization could not be useful to produce tetrahydrocannabinol for commercial use, and in this case, mixoploids are more suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vogl, C. (2004), JIH. 9, 37–49

  2. Williamson, E. M., & Evans, F. J. (2000). Drugs, 60, 1303–1314.

    Article  CAS  Google Scholar 

  3. Hammond, C. T., & Mahlberg, P. G. (1977). American Journal of Botany, 64, 1023–1031.

    Article  Google Scholar 

  4. Alexander, A., Smith, P. F., & Rosengren, R. J. (2009). Cancer Letters, 285, 6–12.

    Article  CAS  Google Scholar 

  5. Truta, E., Gille, E., Toth, E., & Maniu, M. (2002). Journal of Applied Genetics, 43, 451–462.

    Google Scholar 

  6. Griesbach, R. J., & Bhat, R. N. (1990). Horticultural Science, 25, 1284–1286.

    CAS  Google Scholar 

  7. Chakraborti, S. P., Vijayan, K., Roy, B. N., & Qadri, S. M. (1998). Plant Cell Reports, 17, 799–803.

    Article  CAS  Google Scholar 

  8. Nakano, M. T., Nomizu, K., Mizunashi, M., Suzuki, S., Mori, S., Kuwayama, M., et al. (2006). Horticultural Science, 110, 366–371.

    Article  Google Scholar 

  9. Stanys, V., Weckman, A., Staniene, G., & Duchovskis, P. (2006). Plant Cell Tissue and Organ, 84, 263–268.

    Article  CAS  Google Scholar 

  10. GU, X. F., Yang, A. F., Meng, H., & Zhang, J. R. (2005). Plant Cell Reports, 24, 671–676.

    Article  CAS  Google Scholar 

  11. Lichtenthaler, H. K. (1987). Methods in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  12. Roe, J. H. (1955). The Journal of Biological Chemistry, 212, 335–343.

    CAS  Google Scholar 

  13. Somogy, M. (1952). The Journal of Biological Chemistry, 195, 19–29.

    Google Scholar 

  14. Thayumanavan, B., & Sadasivam, S. (1984). Nutrition, 34, 253.

    CAS  Google Scholar 

  15. Updegroff, D. M. (1969). Method Biochemistry Analytical, 32, 420.

    Article  Google Scholar 

  16. Wagner, G. J. (1970). Plant Physiology, 64, 88–93.

    Article  Google Scholar 

  17. Krizek, D. T., Britz, S. J., & Mirecki, R. M. (1998). Planta, 103, 1–7.

    Article  CAS  Google Scholar 

  18. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Rustichelli, C., Ferioli, V., Baraldi, M., Zanoli, P., & Gamberini, G. (1998). Chromatographia, 47, 215–222.

    Article  Google Scholar 

  20. Parry, M. A. J., Schmidt, C. N. G., Cornelium, M. J., Millard, B. N., Burton, S., et al. (1987). Journal of Experimental Botany, 38, 1260–1271.

    Article  CAS  Google Scholar 

  21. Xu, L., Najeeb, U., Naeem, M. S., Daud, M. K., Cao, J. S., Gong, H. J., Shen, W. Q., & Zhou, W. J. (2010). Planta, 54, 659–663.

    CAS  Google Scholar 

  22. Phulari, S. S. (2011). Botany, 1, 207–210.

    Google Scholar 

  23. Jaskani, M. J., Kwon, S. W., & Kim, D. H. (2005). Euphytica, 145, 259–268.

    Article  CAS  Google Scholar 

  24. Grange, S., Leskovar, D. I., Pike, L. M., & Cobb, B. G. (2003). Journal of the American Society for Horticultural Science, 128, 253–259.

    Google Scholar 

  25. Winkel-Shirley, B. (2001). Plant Physiology, 126, 485–493.

    Article  CAS  Google Scholar 

  26. Buchert, J., Koponen, J. M., Suutarinen, M., Mustranta, A., Lille, M., Torronen, R., & Poutanen, K. (2005). Journal of the Science of Food and Agriculture, 85, 2548–2556.

    Article  CAS  Google Scholar 

  27. Knekt, P., Kumpulainen, J., Järvinen, R., Rissanen, H., Heliövaara, M., Reunanen, A., Hakulinen, T., & Aromaa, A. (2002). The American Journal of Clinical Nutrition, 76, 560–568.

    CAS  Google Scholar 

  28. Bretagnolle, F., & Tansley, T. J. D. (1995). New Phytologist, 129, 1–22.

    Article  Google Scholar 

  29. Eichler, M., Spinedi, L., Unfer-Grauwiler, S., Bodmer, M., Surber, C., Luedi, M., & Drewe, J. (2012). Journal of Medicine Plant Natural Products Research, 78, 686–691.

    CAS  Google Scholar 

  30. Dhawan, O. P., & Lavania, U. C. (1996). Euphytica, 87, 81–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Pooya Bagheri (Alberta University, Edmonton) for his help to improve the manuscript level.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakimeh Mansouri.

Additional information

Key Message

All of the analyzed biochemical parameters except photosynthetic parameters showed significant difference under polyploidy condition. These changes were not suitable for Cannabis sativa as a medicinal plant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, M., Mansouri, H. Effect of Induced Polyploidy on Some Biochemical Parameters in Cannabis sativa L.. Appl Biochem Biotechnol 175, 2366–2375 (2015). https://doi.org/10.1007/s12010-014-1435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1435-8

Keywords

Navigation