Skip to main content
Log in

Alginate as a Cell Culture Substrate for Growth and Differentiation of Human Retinal Pigment Epithelial Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells’ behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco’s modified Eagle’s medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells’ integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Strauss, O. (2005). Physiological Reviews, 85, 845–881.

    Article  CAS  Google Scholar 

  2. Martínez- Morales, J. R., Rodrigo, I., & Bovolenta, P. (2004). Bioessays, 26, 766–777.

    Article  Google Scholar 

  3. Davidson, A. E., Millar, I. D., Urquhart, J. E., Burgess-Mullan, R., Shweikh, Y., Parry, N. O., Sullivan, J., Maher, G. J., McKibbin, M., Downes, S. M., Lotery, A. J., Jacobson, S. G., Brown, P. D., Black, G. C., & Manson, F. D. (2009). The American Journal of Human Genetics, 85, 581–592.

    Article  CAS  Google Scholar 

  4. Liang, F. Q., & Godley, B. F. (2003). Experimental Eye Research, 76, 397–403.

    Article  CAS  Google Scholar 

  5. Sanie-Jahromi, F., Ahmadieh, H., Soheili, Z. S., Davari, M., Ghaderi, S., Kanavi, M. R., Samiei, S., Deezagi, A., Pakravesh, J., & Bagheri, A. (2012). BMC Research Notes, 5, 182.

    Article  Google Scholar 

  6. Lamba, D., Karl, M., & Reh, T. (2008). Cell Stem Cell, 2, 538–549.

    Article  CAS  Google Scholar 

  7. Binder, S., Stanzel, B. V., Krebs, I., & Glittenberg, C. (2007). Progress in Retinal and Eye Research, 26, 516–554.

    Article  Google Scholar 

  8. Radtke, N. D., Seiler, M. J., Aramant, R. B., Petry, H. M., & Pidwell, D. J. (2002). American Journal of Ophthalmology, 133, 544–550.

    Article  Google Scholar 

  9. Baker, P. S., & Brown, G. C. (2009). Current Opinion in Ophthalmology, 20, 175–181.

    Article  Google Scholar 

  10. Idelson, M., & Reubinoff, B. (2012). Stem Cells and Cancer Stem Cells, 6, 87–99.

    Google Scholar 

  11. Idelson, M., Alper, R., Obolensky, A., Ben-Shushan, E., Hemo, I., Yachimovich-Cohen, N., Khaner, H., Smith, Y., Wiser, O., Gropp, M., Cohen, M. A., Even-Ram, S., Berman-Zaken, Y., Matzrafi, L., Rechavi, G., Banin, E., & Reubinoff, B. (2009). Cell Stem Cell, 5, 396–408.

    Article  CAS  Google Scholar 

  12. Ahmad, I. (2001). Investigative Ophthalmology & Visual Science, 42, 2743–2748.

    CAS  Google Scholar 

  13. Fodor, W. L. (2003). Reproductive Biology and Endocrinology, 1, 102.

    Article  Google Scholar 

  14. Ito, A., Hibino, E., Kobayashi, C., Terasaki, H., Kagami, H., Ueda, M., Kobayashi, T., & Honda, H. (2005). Tissue Engineering, 11, 489–496.

    Article  CAS  Google Scholar 

  15. Drury, J. L., & Mooney, D. J. (2003). Biomaterials, 24, 4337–4351.

    Article  CAS  Google Scholar 

  16. Tabata, Y. (2009). Journal of the Royal Society Interface, 6, S311–S324.

    Article  CAS  Google Scholar 

  17. Dawson, E., Mapili, G., Erickson, K., Taqvi, S., & Roy, K. (2008). Advanced Drug Delivery Reviews, 60, 215–228.

    Article  CAS  Google Scholar 

  18. Ghidoni, I., Chlapanidas, T., Bucco, M., Crovato, F., Marazzi, M., Vigo, D., Torre, M. L., & Faustini, M. (2008). Cytotechnology, 58, 49–56.

    Article  CAS  Google Scholar 

  19. Rinaudo, M. (2007). Polymer International, 57, 397–430.

    Article  Google Scholar 

  20. Kuo, C. K., & Ma, P. X. (2007). Biomaterials, 22, 511–521.

    Article  Google Scholar 

  21. Lamba, D. A., Gust, J., & Reh, T. A. (2009). Cell Stem Cell, 4, 73–79.

    Article  CAS  Google Scholar 

  22. Hirami, Y., Kada, F., Takahashi, K., Okita, K., Yamanaka, S., Ikeda, H., Yoshimura, N., & Takahashi, M. (2009). Neuroscience Letters, 458, 126–131.

    Article  CAS  Google Scholar 

  23. Akrami, H., Soheili, Z. S., Khalooghi, K., Ahmadieh, H., Rezaie-Kanavi, M., Samiei, S., Davari, M., Ghaderi, S., & Sanie-Jahromi, F. (2009). Journal of Ophthalmic and Vision Research, 4, 134–141.

    CAS  Google Scholar 

  24. Amemiya, K., Haruta, M., Takahashi, M., Kosaka, M., & Eguchi, G. (2004). Biochemical and Biophysical Research Communications, 316, 1–5.

    Article  CAS  Google Scholar 

  25. Engelhardt, M., Bogdahn, U., & Aigner, L. (2005). Brain Research, 1040, 98–111.

    Article  CAS  Google Scholar 

  26. Liang, L., Yan, R. T., Ma, W., Zhang, H., & Wang, S. Z. (2006). Investigative Ophthalmology & Visual Science, 47, 5066–5074.

    Article  Google Scholar 

  27. Park, S. J., Yoon, W. G., Song, J. S., Jung, H. S., Kim, C. J., Oh, S. Y., Yoon, B. H., Jung, G., Kim, H. J., & Nirasawa, T. (2005). Proteomics, 6, 349–363.

    Article  Google Scholar 

  28. Cho, C. K., Shan, S. J., Winsor, E. J., & Diamandis, E. P. (2007). Molecular & Cellular Proteomics, 6, 1406–1415.

    Article  CAS  Google Scholar 

  29. Ghaderi, S., Soheili, Z. S., Ahmadieh, H., Davari, M., Jahromi, F. S., Samie, S., Rezaie-Kanavi, M., Pakravesh, J., & Deezagi, A. (2011). Stem Cells and Development, 20, 1615–1625.

    Article  CAS  Google Scholar 

  30. Justice, B. A., Badr, N. A., & Felder, R. A. (2009). Drug Discovery Today, 14, 102–107.

    Article  CAS  Google Scholar 

  31. Azuma, N., Tadokoro, K., Asaka, A., Yamada, M., Yamaguchi, Y., Handa, H., Matsushima, S., Watanabe, T., Kida, Y., Ogura, T., Torii, M., Shimamura, K., & Nakafuku, M. (2005). Human Molecular Genetics, 14, 1059–1068.

    Article  CAS  Google Scholar 

  32. Hsieh, Y. W., & Yang, X. J. (2009). Neural Development, 4, 1–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra-Soheila Soheili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, R., Soheili, ZS., Samiei, S. et al. Alginate as a Cell Culture Substrate for Growth and Differentiation of Human Retinal Pigment Epithelial Cells. Appl Biochem Biotechnol 175, 2399–2412 (2015). https://doi.org/10.1007/s12010-014-1431-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1431-z

Keyword

Navigation