Skip to main content
Log in

Citric Acid Production in Yarrowia lipolytica SWJ-1b Yeast When Grown on Waste Cooking Oil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 107 cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crolla, A., & Kennedy, K. J. (2001). Journal of Biotechnology, 89, 27–40.

    Article  CAS  Google Scholar 

  2. Karaffa, L., & Kubicek, C. P. (2003). Applied Microbiology and Biotechnology, 61, 189–196.

    Article  CAS  Google Scholar 

  3. Förster, A., Aurich, A., Mauersberger, S., & Barth, G. (2007). Applied Microbiology and Biotechnology, 75, 1409–1417.

    Article  Google Scholar 

  4. Soccol, C. R., Vandenberghe, L. P. S., Rodrigues, C., & Pandey, A. (2006). Food Technology and Biotechnology, 44, 141–149.

    CAS  Google Scholar 

  5. Papanikolaou, S., Galiotou-Panayotou, M., Fakas, S., Komaitis, M., & Aggeli, G. (2008). Bioresource Technology, 99, 2419–2428.

    Article  CAS  Google Scholar 

  6. Liu, X. Y., Chi, Z., Liu, G. L., Wang, F., Madzak, C., & Chi, Z. M. (2010). Metabolic Engineering, 12, 469–476.

    Article  CAS  Google Scholar 

  7. Liu, X. Y., Chi, Z., Liu, G. L., Madzak, C., & Chi, Z. M. (2013). Marine Biotechnology, 15, 26–36.

    Article  CAS  Google Scholar 

  8. Ettayebi, K., Errachidi, F., Jamai, L., Tahri-Jouti, M. A., Sendide, K., & Ettayebi, M. (2003). FEMS Microbiology Letters, 223, 215–219.

    Article  CAS  Google Scholar 

  9. D’Annibale, A., Sermani, G. G., Federici, F., & Petruccioli, M. (2006). Bioresource Technology, 97, 1828–1833.

    Article  Google Scholar 

  10. Klasson, T. K., Clausen, E. C., & Gaddy, J. L. (1989). Applied Biochemistry and Biotechnology, 491, 491–509.

    Article  Google Scholar 

  11. Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Marc, I. (2002). Journal of Applied Microbiology, 92, 737–744.

    Article  CAS  Google Scholar 

  12. Behrens, U., Thiersch, A., Weissbrodt, E., & Stottmeister, U. (1987). Acta Biotechnological, 7(2), 179–183.

    Article  CAS  Google Scholar 

  13. Kamzolova, S. V., Morgunov, I. G., Aurich, A., Perevoznikova, O. A., Shishkanova, N. V., Stottmeister, U., & Finogenova, T. V. (2005). Food Technology and Biotechnology, 43, 113–122.

    CAS  Google Scholar 

  14. Venter, T., Kock, J. L. F., Botes, P. J., Smit, M. S., Hugo, A., & Joseph, M. (2004). Systematic and Applied Microbiology, 27, 135–138.

    Article  CAS  Google Scholar 

  15. Roehr, M., Kubicek, C.P., & Komínek, J. (1996). Citric acid. In: Biotechnology, (H. J. Rehm, G. Reed, (eds.) 2nd ed. Weinheim Verlag Chemie, 6, 307–345.

  16. Max, B., Salgado, J. M., Rodriguez, N., Cortes, S., Converti, A., & Dominguez, J. M. (2010). Brazilian Journal of Microbiology, 41, 862–872.

    Article  CAS  Google Scholar 

  17. Bai, H.R. (2010). Science Times.

  18. Huang, T., & Wang, X. (2013). Life Science Instruments, 11, 12–15.

    Google Scholar 

  19. Kamzolova, S. V., Lunina, J. N., & Morgunov, I. G. (2011). Journal of the American Oil Chemists’ Society, 88, 1965–1976.

    Article  CAS  Google Scholar 

  20. Camp, B. J., & Farmer, L. (1967). Clinical Chemistry, 13, 501–505.

    CAS  Google Scholar 

  21. Marek, A., & Bednarski, W. (1996). Biotechnology Letters, 18, 1155–1160.

    Article  CAS  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  23. Wang, L. F., Wang, Z. P., Liu, X. Y., & Chi, Z. M. (2013). Bioprocess and Biosystems Engineering, 36, 1759–1766.

    Article  CAS  Google Scholar 

  24. Folch, J., Lees, M., & Slane-Stanley, J. (1957). The Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  25. Zhao, C. H., Cui, W., Liu, X. Y., Chi, Z. M., & Madzak, C. (2010). Metabolic Engineering, 12, 510–517.

    Article  CAS  Google Scholar 

  26. Zhan, H. (2009). Chemical Journal on Internet, 11, 41–45.

    Google Scholar 

  27. Vandenberghe, L. P. S., Soccol, C. R., Pandey, A., & Lebeault, J. M. (1999). Brazilian Archives of Biology and Technology, 42, 263–276.

    CAS  Google Scholar 

  28. Yokoya, F. (1992). Citric acid production. In: Industrial fermentation series (pp. 1–82). Campinas, SP. Brazil.

  29. Angumeenal, A. R., & Venkappayya, D. (2012). LWT-Food Science and Technology, 22, 11–4.

    Google Scholar 

  30. Sanchez-Riera, F. (2010). Journal of Biotechnology, 5, 1–9.

    Article  Google Scholar 

  31. Papagianni, M. (2007). Biotechnology Advances, 25, 244–263.

    Article  CAS  Google Scholar 

  32. Papagianni, M., Mattey, M., Berovic, M., & Kristiansen, B. (1999). Food Technology and Biotechnology, 37, 165–171.

    CAS  Google Scholar 

  33. Karthikeyan, A., & Sivakumar, N. (2010). Bioresource Technology, 101, 5552–5556.

    Article  CAS  Google Scholar 

  34. Liu, X. Y., Lv, J. S., Zhang, T., & Deng, Y. F. (2014). Applied Biochemistry and Biotechnology, 173, 501–509.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant 31200023 from the National Natural Science Foundation of China and Grant BK20130416 from the Provincial Natural Science Foundation of Jiangsu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lv, J., Xu, J. et al. Citric Acid Production in Yarrowia lipolytica SWJ-1b Yeast When Grown on Waste Cooking Oil. Appl Biochem Biotechnol 175, 2347–2356 (2015). https://doi.org/10.1007/s12010-014-1430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1430-0

Keywords

Navigation