Skip to main content
Log in

Production of Polyclonal and Monoclonal Antibodies Against the Bacillus thuringiensis Vegetative Insecticidal Protein Vip3Aa16

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study is to establish a quantitative determination of the vegetative insecticidal protein Vip3A from the culture supernatant of Bacillus thuringiensis either by ELISA or by the conventional quantification method of the Western blot band. The Vip3A protein was produced by fermentation of the B. thuringiensis reference strain BUPM95 in 3 L. By Western blot, the Vip3Aa16 toxin was detected in the culture supernatant during the exponential growth phase of B. thuringiensis BUPM95. However, the detection of Vip3Aa16 on Western blot showed in addition to the toxin two other strips (62 and 180 kDa) recognized by the anti-Vip3Aa16 polyclonal antibodies prepared at the Centre of Biotechnology of Sfax Tunisia. For that reason and in order to develop a technique for reliable quantification of the toxin, we have considered the production of polyclonal antibodies at the Julius Kühn Institute, Germany. These antibodies were the basis for the production of monoclonal antibodies directed against the protein produced by the Vip3Aa16 recombinant strain Escherichia coli BL21 (DE3). These monoclonal antibodies were tested by plate-trapped antigen (PTA) and triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA). The selection of hybridoma supernatants gave us four positive clones producing monoclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Vip:

Vegetative insecticidal protein

pAbs:

Polyclonal antibodies

mAbs:

Monoclonal antibodies

ELISA:

Enzyme-linked immunosorbent assay

PTA:

Plate-trapped antigen

TAS:

Triple antibody sandwich

PBS:

Phosphate-buffered saline

References

  1. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., & Dean, D. H. (1998). Microbiology and Molecular Biology Reviews, 62, 775–806.

    CAS  Google Scholar 

  2. La Duc, M. T., Satomi, M., Agata, N., & Venkateswaran, K. (2004). Journal of Microbiological Methods, 56, 383–394.

    Article  Google Scholar 

  3. Estruch, J. J., Warren, G. W., Mullins, M. A., Nye, G. J., Craig, J. A., & Koziel, M. G. (1996). Procedings of the National Academy of Sciences of the United State of America, 93, 5389–5394.

    Article  CAS  Google Scholar 

  4. Koziel, M. G., Carozzi, N. B., Desai, N., Warren, G. W., Dawson, J., Dunder, E., Launis, K., & Evola, S. V. (1996). Annals of the New York Academy of Sciences, 792, 164–171.

    Article  CAS  Google Scholar 

  5. Abdelkefi-Mesrati, L., Boukedi, H., Chakroun, M., Kamoun, F., Azzouz, H., Tounsi, S., Rouis, S., & Jaoua, S. (2011). Journal of Invertebrate Pathology, 107, 198–201.

    Article  CAS  Google Scholar 

  6. Ben Hamadou-Charfi, D., Boukadi, H., Abdelkafi-Mesrati, L., Tounsi, S., & Jaoua, S. (2013). Journal of Invertebrate Pathology, 114, 139–143.

    Article  CAS  Google Scholar 

  7. Honda, T., Ni, Y., Yoh, M., & Miwatani, T. (1989). Medical Microbiology and Immunology, 178, 245–253.

    Article  CAS  Google Scholar 

  8. Kerr, P., Chart, H., Finlay, D., Pollock, D. A., Mackie, D. P., & Ball, H. J. (2001). Journal of Applied Microbiology, 50, 543–549.

    Article  Google Scholar 

  9. Hochel, I., & Skvor, J. (2009). Czech Journal of Food Sciences, 27, S2-66–S2-74.

    Google Scholar 

  10. Clark, M. F., & Adams, A. N. (1977). Journal of General Virology, 34, 475–483.

    Article  CAS  Google Scholar 

  11. Abdelkefi-Mesrati, L., Tounsi, S., & Jaoua, S. (2005). FEMS Microbiology Letters, 244, 353–358.

    Article  Google Scholar 

  12. Abdelkefi-Mesrati, L., Rouis, S., Sellami, S., & Jaoua, S. (2009). Molecular Biotechnology, 43, 15–19.

    Article  CAS  Google Scholar 

  13. Wang, J., Yu, G., Sheng, W., Shi, M., Guo, B., & Wang, S. (2011). Journal of Agriculture and Food Chemistry, 59, 2997–3003.

    Article  CAS  Google Scholar 

  14. Cerovska, N., Moravec, T., Posecka, P., Dedic, P., & Filigarova, M. (2003). Journal of Phytopathology, 151, 195–200.

    Article  CAS  Google Scholar 

  15. Kobayashi, K., Suzuki, S., Izawa, Y., Yokozeki, K., Miwa, K., & Yamanaka, S. (1998). Journal of General and Applied Microbiology, 44, 85–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks go to the working group Epidemiology and Phathogen Diagnostics at JKI in Quedlinburg Germany under the direction of Dr. Rabenstein, who supported us and allowed us to gain experience in the field of cell culture technology. Here, we would like to thank in particular Katja Thile and Annika Hansmann, for their extraordinary commitment, support, and expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorra Ben Hamadou-Charfi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamadou-Charfi, D.B., Sauer, A.J., Abdelkafi-Mesrati, L. et al. Production of Polyclonal and Monoclonal Antibodies Against the Bacillus thuringiensis Vegetative Insecticidal Protein Vip3Aa16. Appl Biochem Biotechnol 175, 2357–2365 (2015). https://doi.org/10.1007/s12010-014-1426-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1426-9

Keywords

Navigation