Skip to main content
Log in

Impact of Acidity and Metal Ion on the Antibacterial Activity and Mechanisms of β- and α-Chitosan

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the effects of acidity and metal ion on the antibacterial activity of α- and β-chitosan at different molecular weights (Mw, 22–360 kDa) against Escherichia coli and Listeria innocua through agar well diffusion assay. Spectrophotometric, electrophoretic, and confocal fluorescence microscopy analysis were further employed to evaluate the antibacterial mechanisms probably involved. Increasing pH from 4.0 to 5.0 weakened the antibacterial ability of chitosan as shown by the decreased bacteria growth inhibition zone (BGIZ) from 0.63 to 0.57 cm for β-chitosan (61 kDa) and from 0.62 to 0.57 cm for α-chitosan (30 kDa) against E. coli. All β- and α-chitosan samples showed antibacterial activity against L. innocua, in which 22 kDa β-chitosan and 30 kDa α-chitosan at pH 4.0 had the highest antibacterial activity with BGIZ of 1.22 and 0.98 cm, respectively. Interactive effect between pH and Mw on the antibacterial activity of β-chitosan was observed, but not of α-chitosan. Adding Co2+ and Ni2+ significantly improved the antibacterial activity of chitosan, while adding K+, Na+, and Li+ significantly weakened the antibacterial activity of some β- and α-chitosan samples (P < 0.05), and different Mw and forms of chitosan showed different metal ion absorption capacities. Results indicate that chitosan might insert into the groove of bacterial DNA double helix structure to induce DNA degradation and permeate through bacteria cell membranes and combine with genomic DNA to induce its dysfunction, providing evidences for the antibacterial mechanisms of chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rinaudo, M. (2006). Progress in Polymer Science, 31, 603–632.

    Article  CAS  Google Scholar 

  2. Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). International Journal of Food Microbiology, 144(1), 51–63.

    Article  CAS  Google Scholar 

  3. Jang, M. K., Kong, B. G., Jeong, Y. I., Lee, C. H., & Nah, J. W. (2004). Journal Polymer Science Polymer Chemistry, 42, 3423–3432.

    Article  CAS  Google Scholar 

  4. Jung, J., & Zhao, Y. Y. (2012). Bioorganic and Medicinal Chemistry, 20, 2905–2911.

    Article  CAS  Google Scholar 

  5. Jung, J., & Zhao, Y. Y. (2013). Journal of Agricultural and Food Chemistry, 61, 8783–8789.

    Article  CAS  Google Scholar 

  6. Chen, J., & Zhao, Y. (2012). Journal of Food Science, 77(5), E127–136.

    Article  CAS  Google Scholar 

  7. Jung, J., Cavender, G., & Zhao, Y. (2014). Applied Microbiology and Biotechnology, 98, 425–435.

    Article  CAS  Google Scholar 

  8. Jing, Y. J., Hao, Y. J., QU, H., Shan, Y., Li, D. S., & Du, R. Q. (2007). Acta Biologica Hungarica, 58, 75–86.

    Article  CAS  Google Scholar 

  9. Zhang, A. J., Qin, Q. L., Zhang, H., Wang, H. T., Li, X., Miao, L., & Wu, Y. J. (2011). Czech Journal of Food Sciences, 29, 616–623.

    CAS  Google Scholar 

  10. Jung, J., & Zhao, Y. Y. (2011). Carbohydrate Research, 346, 1876–1884.

    Article  CAS  Google Scholar 

  11. Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2012). Food Technology Biotechnology, 50(4), 12–25.

    Google Scholar 

  12. Bassi, R., Prasher, S. O., & Simpson, B. K. (1999). Journal of Environmental Science and Health, A34, 289–294.

    Article  CAS  Google Scholar 

  13. Chen, A. H., Liu, S. C., Chen, C. Y., & Chen, C. Y. (2008). Journal of Hazardous Materials, 154, 184–191.

    Article  CAS  Google Scholar 

  14. Chandumpaia, A., Singhpibulporn, N., Faroongsarng, D., & Sornprasit, P. (2004). Green Chemistry, 11, 498–509.

    Google Scholar 

  15. Weinhold, M. X., Sauvageau, J. C. M., Keddig, N., Matzke, M., Tartsch, B., Grunwald, I., Kübel, C., Jastorff, B., & Thöming, J. (2009). Green Chemistry, 11, 498–509.

    Article  CAS  Google Scholar 

  16. Holder, I. A., & Boyce, S. T. (1994). Burns, 20, 426–429.

    Article  CAS  Google Scholar 

  17. No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). International Journal of Food Microbiology, 74(1–2), 65–72.

    Article  CAS  Google Scholar 

  18. Schatz, C., Viton, C., Delair, T., Pichot, C., & Domard, A. (2003). Biomacromolecules, 4, 641–648.

    Article  CAS  Google Scholar 

  19. Jeon, Y. J., Park, P. J., & Kim, S. K. (2001). Carbohydrate Polymer, 44(1), 71–76.

    Article  CAS  Google Scholar 

  20. Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., & Roller, S. (2001). International Journal of Food Microbiology, 71(2–3), 235–244.

    Article  CAS  Google Scholar 

  21. Je, J. Y., & Kim, S. K. (2006). Journal of Agricultural and Food Chemistry, 54(18), 6629–6633.

    Article  CAS  Google Scholar 

  22. Chen, W., Wu, Q. P., Zhang, J. M., & Wu, H. Q. (2008). Acta Microbiologica Sinica, 48, 164–168.

    CAS  Google Scholar 

  23. Liu, X. F., Song, L., Li, L., Li, S. Y., & Yao, K. (2007). Journal of Applied Polymer Science, 103, 3521–3528.

    Article  CAS  Google Scholar 

  24. Borchard, G. (2001). Advance Drug Delivery Reveiws, 52, 145–150.

    Article  CAS  Google Scholar 

  25. Hadwiger, L. A., Kendra, D. F., Fristensky, B. W., & Wagoner, W. (1986). In R. Muzzarelli et al. (Eds.), Chitin in nature and technology (pp. pp. 209–214). NJ: Plenum.

    Chapter  Google Scholar 

  26. Takimoto, C. H., & Calvo, E. (2008). In R. Pazdur et al. (Eds.), Cancer management: a multidisciplinary approach (11tth ed., pp. pp.42–58). London: UBM Medica.

    Google Scholar 

  27. No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Journal of Food Science, 72(5), 87–100.

    Article  Google Scholar 

  28. Wang, Y. H., Yu, X. W., Xu, Y. Y., & Xia, W. S. (2012). Food Science, 33(13), 92–95.

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Alan Bakalinsky of the Department of Food Science and Technology, Oregon State University for his assistance on the analysis of the interactions between chitosan and bacteria genomic DNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyun Zhao.

Additional information

Qian Bingjun and Jooyeoun Jung contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bingjun, Q., Jung, J. & Zhao, Y. Impact of Acidity and Metal Ion on the Antibacterial Activity and Mechanisms of β- and α-Chitosan. Appl Biochem Biotechnol 175, 2972–2985 (2015). https://doi.org/10.1007/s12010-014-1413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1413-1

Keywords

Navigation