Skip to main content
Log in

Biodegradation of Insecticide Monocrotophos by Bacillus subtilis KPA-1, Isolated from Agriculture Soils

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Twenty bacterial strains, which are capable of degrading monocrotophos, were isolated from five soil samples collected from agriculture soils in India. The ability of the strains to mineralize monocrotophos was investigated under different culture conditions. A potential strain degrading monocrotophos was selected and named KPA-1. The strain was identified as a Bacillus subtilis on the basis of the results of its cellular morphology, physiological and chemotaxonomic characteristics, and phylogenetic conclusion of 16S ribosomal DNA (rDNA) gene sequences. Organophosphate hydrolase (opdA gene) involved in the initial biodegradation of monocrotophos in KPA-1 was quantitatively expressed, which was a constitutively expressed cytosolic enzyme. RT-qPCR data revealed that KPA-1 harboring opdA gene in an early stage was significantly downregulated from opdA gene in a degradation stage (1.5 fold more) with a p value of 0.0375 (p < 0.05). We have optimized culture conditions for the efficient degradation (94.2 %) of monocrotophos under aerobic conditions. Growth and degradation kinetic studies proved that KPA-1 was able to grow in minimal salt medium containing 1000 ppm monocrotophos as the only carbon source. Hence, KPA-1 culture has a great potential utility for the bioremediation of agriculture soils contaminated with organophosphorus pesticides, particularly monocrotophos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh, B. K., & Walker, A. (2006). FEMS Microbiology Reviews, 30, 428–471.

    Article  CAS  Google Scholar 

  2. Anonymous., (2013a). http://www.cseindia.org/userfiles/paper_pesticide.pdf.

  3. Shetty, P. K., Ayyappan, S., & Swaminathan, M. S. (2013). Indian Council of Agricultural Research. India: New Delhi.

    Google Scholar 

  4. Anonymous., (2013b). http://164.100.47.134/intranet/Currenteconomicscenario.pdf

  5. Chapalamadugu, S., & Chaudhry, G. R. (1992). Critical Reviews in Biotechnology, 12, 357–389.

    Article  CAS  Google Scholar 

  6. Ortiz-Hernández, M. L., Sánchez-Salinas, E., Vázquez, R., & Quintero, R. (1997). Biotechnology, 2, 129–151.

    Google Scholar 

  7. Karpouzas, D. G., & Singh, B. K. (2006). Advances in Microbial Physiology, 51, 119–185.

    Article  CAS  Google Scholar 

  8. Ortiz-Hernández, M. L., & Sánchez-Salinas, E. (2010). Revista Internacional de Contaminación Ambiental, 26, 27–38.

    Google Scholar 

  9. Bhadbhade, B. J., Dhakephlkar, P. K., Sarnaik, S. S., & Kanekar, P. P. (2002). Biotechnology Letters, 24, 647–650.

    Article  CAS  Google Scholar 

  10. Singh, S., & Singh, D. K. (2003). Canadian Journal of Microbiology, 49, 101–109.

    Article  CAS  Google Scholar 

  11. Bhalerao, T. S., & Puranik, P. R. (2009). International Biodeterioration & Biodegradation, 63, 503–508.

    Article  CAS  Google Scholar 

  12. Gundi, V. A. K. B., & Reddy, B. R. (2006). Chemosphere, 62, 396–403.

    Article  CAS  Google Scholar 

  13. Jia, K. Z., Cui, Z. L., He, J., Guo, P., & Li, S. P. (2006). FEMS Microbiology Letters, 263, 155–162.

    Article  CAS  Google Scholar 

  14. Jia, K. Z., Li, X. H., He, J., Gu, L. F., Ma, J. P., & Li, S. P. (2007). Huan Jing Ke Xue, 28, 908–912.

    CAS  Google Scholar 

  15. Kavikarunya, S., & Reetha, D. (2012). International Journal of Pharmaceutical and Biological Archive, 3, 685–691.

    Google Scholar 

  16. Vijayalakshmi, P., & Usha, M. S. (2012). Journal of Chemical and Pharmaceutical Research, 4, 2532–2539.

    CAS  Google Scholar 

  17. Mulbry, W. W., Karns, J. S., Kearney, P. C., Nelson, J. O., McDaniel, C. S., & Wild, J. R. (1986). Applied and Environmental Microbiology, 51, 926–930.

    CAS  Google Scholar 

  18. Ang, E. L., Zhao, H. M., & Obbard, J. P. (2005). Enzyme and Microbial Technology, 37, 487–496.

    Article  CAS  Google Scholar 

  19. Gorla, P., Pandey, J. P., Parthasarathy, S., Merrick, M., & Siddavattam, D. (2009). Journal of Bacteriology, 191, 6292–6299.

    Article  CAS  Google Scholar 

  20. Horne, I., Sutherland, T. D., Harcourt, R. L., Russell, R. J., & Oakeshott, J. G. (2002). Applied and Environmental Microbiology, 68, 3371–3376.

    Article  CAS  Google Scholar 

  21. Pinjari, A. B., Pandey, J. P., Kamireddy, S., & Siddavattam, D. (2013). Letters in Applied Microbiology, 57, 63–68.

    Article  CAS  Google Scholar 

  22. Blatchford, P. A., Scott, C., French, N., & Rehm, B. H. (2012). Immobilization of organophosphohydrolase opdA from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli. Biotechnology and Bioengineering, 109, 1101–1108.

    Article  CAS  Google Scholar 

  23. Skripsky, T., & Loosli, R. (1994). Review in Environmental Contamination and Toxicology, 139, 13–39.

    CAS  Google Scholar 

  24. Krieg, N. R., & Holt, J. G. (1984). Bergey’s manual of systematic bacteriology. USA: Williams & Wilkins.

    Google Scholar 

  25. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  26. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  27. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  28. Kimura, M. (1980). Journal of Molecular Evolution, 16, 111–120.

    Article  CAS  Google Scholar 

  29. Greenberg, A. E., Clesceri, L. S., & Eaton, A. D. (1992). Standard methods for examination of water and waste water (18th ed.). Washington, DC, USA: APHA.

    Google Scholar 

  30. Surekha, R. M., Lakshmi, P. K. L., Suvarnalatha, D., Jaya, M., Aruna, S., Jyothi, K., Narasimha, G., & Venkateswarlu, K. (2008). African Journal of Microbiology Research, 2, 026–031.

    Google Scholar 

  31. Bhadbhade, B. J., Sarnaik, S. S., & Kanekar, P. P. (2002). Journal of Applied Microbiology, 93, 224–234.

    Article  CAS  Google Scholar 

  32. Horiba, Y., Khan, S. T., & Hiraishi, A. (2005). Environmental Microbiology, 20, 25–33.

    Article  Google Scholar 

  33. Yu-bin, T., Xu, Y., Fang-yan, C., Rui-ling, J., & Xin-gang, W. (2011). African Journal of Biotechnology, 10, 6549–6557.

    Article  Google Scholar 

  34. Pandey, J. P., Gorla, P., Manavathi, B., & Siddavattam, D. (2009). Molecular Biology Reports, 36, 449–454.

    Article  CAS  Google Scholar 

  35. Qui, X. H., Bai, W. Q., Zhong, Q. Z., Li, M., He, F. Q., & Li, B. T. (2006). Journal of Applied Microbiology, 101, 986–994.

    Article  Google Scholar 

  36. Yang, C., Liu, N., Guo, X., & Qiao, C. (2006). FEMS Microbiology Letters, 265, 118–125.

    Article  CAS  Google Scholar 

  37. Ahire, K. C., Kapadnis, R. L., Kulkarni, G. J., Shouche, Y. S., & Deopurkar, R. L. (2012). Biodegradation, 23, 165–176.

    Article  CAS  Google Scholar 

  38. Deshpande, N. M., Dhakephalkar, P. K., & Kanekar, P. P. (2001). Letters in Applied Microbiology, 33, 275–279.

    Article  CAS  Google Scholar 

  39. Awad, N. S., Sabit, H. H., Abo-Aba, S. E. M., & Bayoumi, R. A. (2011). African Journal of Microbiology Research, 5, 2855–2862.

    CAS  Google Scholar 

  40. Beynon, K. I., Hutson, D. H., & Wright, A. N. (1973). Research Reviews, 47, 55–142.

    Article  CAS  Google Scholar 

  41. Eto, M. (1974). Organic and Biological Chemistry. Cleveland, OH, USA: CRC Press.

    Google Scholar 

  42. Hassal, A. K. (1990). Structure, metabolism and mode of action (2nd ed.). UK: ELBS Publication.

    Google Scholar 

  43. Lee, P. W., Fukudo, J. M., Hernandez, H., & Stearns, S. M. (1990). Journal of Agricultural and Food Chemistry, 38, 567–573.

    Article  CAS  Google Scholar 

  44. Bhadbhade, B. J., Sarnaik, S. S., & Kanekar, P. P. (2002). Current Microbiology, 45, 345–349.

    Article  Google Scholar 

  45. Wolfenden, R., & Spence, G. (1967). Biochemica Biophysica Acta, 146, 296–298.

    Article  CAS  Google Scholar 

  46. Madigan, M.T., Martinko, J.M., & Parker, J. (2004). Biología de los micoorganismos, Pearson Prentice Hall. Madrid. Pp-1011.

Download references

Acknowledgment

The authors are grateful to Xcelris Labs Ltd., Ahmadabad, India, for bacterial identification services and Gujarat Laboratories, Ahmadabad, India, for HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shilpkar.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, K.P., Shilpkar, P., Shah, M.C. et al. Biodegradation of Insecticide Monocrotophos by Bacillus subtilis KPA-1, Isolated from Agriculture Soils. Appl Biochem Biotechnol 175, 1789–1804 (2015). https://doi.org/10.1007/s12010-014-1401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1401-5

Keywords

Navigation