Skip to main content
Log in

Pharmacokinetic of Pseudoephedrine in Rat Serum with Luminol-Pepsin Chemiluminescence System by Flow Injection Analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pepsin (Pep) accelerated the electron transferring rate of excited 3-aminophathlate and enhanced luminol-dissolved oxygen chemiluminescence (CL) intensity, and the flow injection (FI) luminol-Pep CL system was first developed. It was found that the CL intensity of luminol-Pep reaction could be remarkably inhibited by pseudoephedrine (PE); the decrement of CL intensity was linear to the logarithm of PE concentration in the range of 0.1∼100.0 nmol L−1 with a detection limit of 0.03 nmol mL−1 (3σ). At a flow rate of 2.0 mL min−1, the complete process including washing and sampling was performed within 40 s, offering a sample throughput of 90 h−1. This proposed method was successfully applied to determining PE in rat serum for 18 h after intragastric administration with the elimination ratio of 42.34 % and recoveries from 90.3 to 110.6 %. The pharmacokinetic results showed that PE could be rapidly absorbed into serum with peak concentration (C max) of 1.45 ± 0.18 g L−1 at the time (T max) of 1.49 ± 0.02 h; the absorption half-life (0.35 ± 0.04 h), elimination half-life (1.86 ± 0.24 h), the area under curve (109.81 ± 6.03 mg L−1 h−1), mean residence time (3.82 ± 0.27 h), and elimination rate constant (2.26 ± 0.23 L g−1 h−1) in rats vivo were derived, respectively. The possible CL mechanism of luminol-Pep-PE reaction was discussed by FI-CL, fluorescence, and molecular docking (MD) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Renaud, J. P., & Delsuc, M. A. (2009). Current Opinion in Pharmacology, 9, 622–628.

    Article  CAS  Google Scholar 

  2. Azevedo de, W.F.J. Caceres, Pauli, R.A. Timmers, I. L.F. Barcellos, G.B. Rocha, K.B. & Soares, M.B. (2009). Current Drug Targets, 10, 271–278.

  3. Huang, S. M., Zhao, H., Lee, J. I., Reynolds, K., Zhang, L., Temple, R., & Lesko, L. J. (2010). Clinical Pharmacology and Therapeutics, 87, 497–503.

    Article  CAS  Google Scholar 

  4. Minai, R., Matsuo, Y., Onuki, H., & Hirota, H. (2008). Proteins, 72, 367–381.

    Article  CAS  Google Scholar 

  5. Colinge, J., Rix, U., Bennett, K. L., & Superti-Furga, G. (2012). Journal of Proteomics, 6, 102–116.

    CAS  Google Scholar 

  6. Yang, R., Li, S. Q., & Zhang, Q. H. (2004). Journal of Agricultural and Food Chemistry, 52, 7400–7406.

    Article  CAS  Google Scholar 

  7. Dunn, B. M. (2002). Chemistry Review, 102, 4431–4458.

    Article  CAS  Google Scholar 

  8. Antonov, V. K., Ginodman, L. M., Kapitannikov, Y. V., Barshevskaya, T. N., Gurova, A. G., & Rumsh, L. D. (1978). FEBS Letters, 88, 87–90.

    Article  CAS  Google Scholar 

  9. Dee, D. R., & Yada, R. Y. (2009). Biochemistry, 49, 365–371.

    Article  Google Scholar 

  10. Boeris, V., Micheletto, Y., Lionzo, M., Silveira, N. P. D., & Picó, G. (2011). Carbohydrate Polymers, 84, 459–464.

    Article  CAS  Google Scholar 

  11. Zeng, H. J., Liang, H. L., You, J., & Qu, L. B. (2013). luminescence. doi:10.1002/bio.2610.

    Google Scholar 

  12. Huang, Y. B., Yan, J., Liu, B. Z., Yu, Z., Gao, X. Y., Tang, Y. C., & Zi, Y. Q. (2010). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 1024–1029.

    Article  Google Scholar 

  13. Zhang, H. M., Cao, J., Fei, Z. H., & Wang, Y. Q. (2012). Journal of Molecular Structure, 1021, 34–39.

    Article  CAS  Google Scholar 

  14. Lian, S., Wang, G., Zhou, L., & Yang, D. (2013). Luminescence, 28, 967–972.

    Article  CAS  Google Scholar 

  15. Wang, Y. Q., & Zhang, H. M. (2013). Journal of Agricultural and Food Chemistry, 61, 11191–11200.

    Article  CAS  Google Scholar 

  16. Hwang, S. S., Gorsline, J., Louie, J., Dye, D., Guinta, D., & Hamel, L. (1995). The Journal of Clinical Pharmacology, 35, 259.

    Article  CAS  Google Scholar 

  17. Lloyd, A., Russell, M., Blanes, L., Doble, P., & Roux, C. (2013). Forensic Science International, 228, 8–14.

    Article  CAS  Google Scholar 

  18. Barroso, O., Goudreault, D. C., Banús, M. L., Ayotte, C., Mazzoni, I., Boghosian, T., & Rabin, O. (2012). Drug Testing and Analysis, 4, 320–329.

    Article  CAS  Google Scholar 

  19. Louhaichi, M. R., Jebali, S., Loueslati, M. H., Adhoum, N., & Monser, L. (2009). Talanta, 78, 991–997.

    Article  CAS  Google Scholar 

  20. Liu, Y. M., Tian, W., Jia, Y. X., & Yue, H. Y. (2009). Biomedical Chromatography, 23, 1138–1144.

    Article  CAS  Google Scholar 

  21. Deng, D. L., Deng, H., Zhang, L. C., & Su, Y. Y. (2014). Journal of Chromatographic Science, 52, 357–362.

    Article  CAS  Google Scholar 

  22. Lee, M. J., Lee, H. W., Kang, J. M., Seo, J. H., Tak, S. K., Shim, W., Yim, S. V., Hong, S. J., & Lee, K. T. (2010). Biomedical Chromatography, 24, 1031–1037.

    Article  CAS  Google Scholar 

  23. Li, H., Zhang, C., Wang, J., Jiang, Y., Fawcett, J. P., & Gu, J. (2010). Journal of Pharmaceutical and Biomedical Analysis, 51, 716–722.

    Article  CAS  Google Scholar 

  24. Ryu, J. K., & Yoo, S. D. (2012). Journal of Pharmacy and Pharmaceutical Sciences, 15, 519–527.

    CAS  Google Scholar 

  25. Das, S., Powe, A. M., Baker, G. A., Valle, B., EI-Zahab, B., Sintim, H. O., Lowry, M., Fakayode, S. O., Mcarroll, M. E., Patonay, G., Li, M., Strongin, R. M., Geng, M. L., & Warner, I. M. (2012). Analytical Chemistry, 84, 597–625.

    Article  CAS  Google Scholar 

  26. Rodriguez-Orozco, A. R., Ruiz-Reyes, H., & Medina-Serriteno, N. (2010). Mini Reviews in Medicinal Chemistry, 10, 1393–1400.

    Article  CAS  Google Scholar 

  27. Tsogas, G. Z., Giokas, D. L., & Vlessidis, A. G. (2014). Analytical Chemistry, 86, 3484–3492.

    Article  CAS  Google Scholar 

  28. Tan, X. J., Wang, Z. M., Chen, D. H., Luo, K., Xiong, X. Y., & Song, Z. H. (2014). Chemosphere, 108, 26–32.

    Article  CAS  Google Scholar 

  29. J.R. Lakowicz (1999) 2nd ed. Plenum Press, New York, pp 27–60.

  30. Lakowicz, J. R., & Weber, G. (1973). Biochemistry, 12, 4161–4170.

    Article  CAS  Google Scholar 

  31. He, X. L., Xie, X. F., Shao, X. D., & Song, Z. H. (2010). Luminescence, 25, 384–388.

    Article  CAS  Google Scholar 

  32. Wang, Z. M., & Song, Z. H. (2010). The Analyst, 135, 2546–2553.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 21275118) and the Open Fund from Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Li, Y., Zheng, X. et al. Pharmacokinetic of Pseudoephedrine in Rat Serum with Luminol-Pepsin Chemiluminescence System by Flow Injection Analysis. Appl Biochem Biotechnol 175, 1805–1816 (2015). https://doi.org/10.1007/s12010-014-1396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1396-y

Keywords

Navigation