Skip to main content
Log in

High-Level Extracellular Production of Glucose Oxidase by Recombinant Pichia Pastoris Using a Combined Strategy

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, a combined strategy was developed to improve the production of glucose oxidase (GOD) (EC 1.1.3.4) in Pichia pastoris. One of the main challenges facing protein production by the high-density fermentation of P. pastoris is the high demand for oxygen. Another challenge is how to balance a reduction in oxygen consumption and its effects on protein production. Herein, a combined strategy involving mannitol co-feeding, two-stage methanol induction, and the co-expression of the transcriptional activator general control non-derepressible 4 (GCN4) from P. pastoris was used. A two-stage, co-feeding strategy, based on a mannitol/methanol mixture in a 3-L fermentor was used to enhance cell viability and protein production. This resulted in an increased GOD yield of 1208.2 U/mL compared with a control strain (427.6 U/mL). An increase in the copy number of the GCN4 gene enhanced the GOD yield (1634.7 U/mL) by 2.8-fold and the protein concentration (19.55 g/L) by 1.58-fold compared with the control (7.59 g/L). This strategy illustrates a way to overcome the high oxygen requirement during high-density fermentation of P. pastoris and balances the reduction of oxygen consumption and protein production. Moreover, the series of strategies presented in this work provide valuable and novel information for the industrial production of GOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase–an overview. Biotechnology Advances, 27, 489–501.

    Article  CAS  Google Scholar 

  2. Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Optimization of Aspergillus niger fermentation for the production of glucose oxidase. Food and Bioprocess Technology, 2, 344–352.

    Article  CAS  Google Scholar 

  3. Çalık, P., Bozkurt, B., Zerze, G. H., İnankur, B., Bayraktar, E., Boy, E., Orman, M. A., Açık, E., & Özdamar, T. H. (2013). Effect of co-substrate sorbitol different feeding strategies on human growth hormone production by recombinant Pichia pastoris. Journal Chemical Technology and Biotechnology, 88, 1631–1640.

    Article  Google Scholar 

  4. Çelik, E., Çalık, P., & Oliver, S. G. (2010). Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: effects of methanol feeding rate. Biotechnology and Bioengineering, 105, 317–329.

    Article  Google Scholar 

  5. Cereghino, J. L., & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Review, 24, 45–66.

    Article  CAS  Google Scholar 

  6. Cos, O., Ramón, R., Montesinos, J., & Valero, F. (2006). Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microbial Cell Factories, 5, 17–38.

    Article  Google Scholar 

  7. Cos, O., Serrano, A., Montesinos, J. L., Ferrer, P., Cregg, J. M., & Valero, F. (2005). Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. Journal of Biotechnology, 116, 321–335.

    Article  Google Scholar 

  8. Crognale, S., Pulci, V., Brozzoli, V., Petruccioli, M., & Federici, F. (2006). Expression of Penicillium variabile P16 glucose oxidase gene in Pichia pastoris and characterization of the recombinant enzyme. Enzyme and Microbial Technology, 39, 1230–1235.

    Article  CAS  Google Scholar 

  9. Damasceno, L. M., Huang, C.-J., & Batt, C. A. (2012). Protein secretion in Pichia pastoris and advances in protein production. Applied Microbiology and Biotechnology, 93, 31–39.

    Article  Google Scholar 

  10. Fiedurek, J., & Gromada, A. (2000). Production of catalase and glucose oxidase by Aspergillus niger using unconventional oxygenation of culture. Journal of Applied Microbiology, 89, 85–89.

    Article  CAS  Google Scholar 

  11. Frederick, K., Tung, J., Emerick, R., Masiarz, F., Chamberlain, S., Vasavada, A., Rosenberg, S., Chakraborty, S., Schopfer, L., & Schopter, L. (1990). Glucose oxidase from Aspergillus niger. Cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme. Journal of Biological Chemistry, 265, 3793–3802.

    CAS  Google Scholar 

  12. Gasser, B., Saloheimo, M., Rinas, U., Dragosits, M., Rodríguez-Carmona, E., Baumann, K., Giuliani, M., Parrilli, E., Branduardi, P., & Lang, C. (2008). Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microbial Cell Factories, 7, 11.

    Article  Google Scholar 

  13. Gerritsen, M., Kros, A., Lutterman, J., Nolte, R., & Jansen, J. (2001). A percutaneous device as model to study the in vivo performance of implantable amperometric glucose sensors. Journal of Materials Science. Material in Medicine, 12, 129–134.

    Article  CAS  Google Scholar 

  14. Guo, Y., Lu, F., Zhao, H., Tang, Y., & Lu, Z. (2010). Cloning and heterologous expression of glucose oxidase gene from Aspergillus niger Z-25 in Pichia pastoris. Applied Biochemistry and Biotechnology, 162, 498–509.

    Article  CAS  Google Scholar 

  15. Harding, H., Zhang, Y., Zeng, H., Novoa, I., Lu, P., Calfon, M., Sadri, N., Yun, C., Popko, B., & Paules, R. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular Cell, 11, 619.

    Article  CAS  Google Scholar 

  16. Hatzinikolaou, D., & Macris, B. (1995). Factors regulating production of glucose oxidase by Aspergillus niger. Enzyme and Microbial Technology, 17, 530–534.

    Article  CAS  Google Scholar 

  17. Haynes, C. M., Titus, E. A., & Cooper, A. A. (2004). Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Molecular Cell, 15, 767–776.

    Article  CAS  Google Scholar 

  18. Hohenblum, H., Gasser, B., Maurer, M., Borth, N., & Mattanovich, D. (2004). Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnology and Bioengineering, 85, 367–375.

    Article  CAS  Google Scholar 

  19. Inan, M., & Meagher, M. M. (2001). Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. Journal of Bioscience and Bioengineering, 92, 585–589.

    Article  CAS  Google Scholar 

  20. Jiménez-Martí, E., Zuzuarregui, A., Gomar-Alba, M., Gutiérrez, D., Gil, C., & Del Olmo, M. (2011). Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. International Journal of Food Microbiology, 145, 211–220.

    Article  Google Scholar 

  21. Jordà, J., Jouhten, P., Cámara, E., Maaheimo, H., Albiol, J., & Ferrer, P. (2012). Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures. Microbial Cell Factories, 11, 57.

    Article  Google Scholar 

  22. Jungo, C., Rérat, C., Marison, I. W., & von Stockar, U. (2006). Quantitative characterization of the regulation of the synthesis of alcohol oxidase and of the expression of recombinant avidin in a Pichia pastoris Mut+ strain. Enzyme and Microbial Technology, 39, 936–944.

    Article  CAS  Google Scholar 

  23. Jungo, C., Schenk, J., Pasquier, M., Marison, I. W., & von Stockar, U. (2007). A quantitative analysis of the benefits of mixed feeds of sorbitol and methanol for the production of recombinant avidin with Pichia pastoris. Journal of Biotechnology, 131, 57–66.

    Article  CAS  Google Scholar 

  24. Kapat, A., Jung, J.-K., & Park, Y.-H. (1998). Improvement of extracellular recombinant glucose oxidase production in fed-batch culture of Saccharomyces cerevisiae: effect of different feeding strategies. Biotechnological Letters, 20, 319–323.

    Article  CAS  Google Scholar 

  25. Kapat, A., Jung, J. K., & Park, Y. H. (2001). Enhancement of glucose oxidase production in batch cultivation of recombinant Saccharomyces cerevisiae: optimization of oxygen transfer condition. Journal of Applied Microbiology, 90, 216–222.

    Article  CAS  Google Scholar 

  26. Krainer, F. W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut, O., & Glieder, A. (2012). Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories, 11, 22–35.

    Article  CAS  Google Scholar 

  27. Kruger, N. J. (1994), The Bradford method for protein quantitation. In J. M. Walker (Ed.), Basic protein and peptide protocols (pp. 9–15). New York: Springer.

  28. Lu, T., Peng, X., Yang, H., & Ji, L. (1996). The production of glucose oxidase using the waste myceliums of Aspergillus niger and the effects of metal ions on the activity of glucose oxidase. Enzyme and Microbial Technology, 19, 339–342.

    Article  CAS  Google Scholar 

  29. Malherbe, D., Du Toit, M., Otero, R. C., Van Rensburg, P., & Pretorius, I. (2003). Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Applied Microbiology and Biotechnology, 61, 502–511.

    Article  CAS  Google Scholar 

  30. Niu, H., Jost, L., Pirlot, N., Sassi, H., Daukandt, M., Rodriguez, C., & Fickers, P. (2013). A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut+/pAOX1-lacZ strain. Microbial Cell Factories, 12, 33.

    Article  CAS  Google Scholar 

  31. Patil, C. K., Li, H., & Walter, P. (2004). Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. PLoS Biology, 2, 1208–1223.

    Article  CAS  Google Scholar 

  32. Paulová, L., Hyka, P., Branská, B., Melzoch, K., & Kovar, K. (2012). Use of a mixture of glucose and methanol as substrates for the production of recombinant trypsinogen in continuous cultures with Pichia pastoris Mut+. Journal of Biotechnology, 157, 180–188.

    Article  Google Scholar 

  33. Petruccioli, M., Federici, F., Bucke, C., & Keshavarz, T. (1999). Enhancement of glucose oxidase production by Penicillium variabile P16. Enzyme and Microbial Technology, 24, 397–401.

    Article  CAS  Google Scholar 

  34. Petruccioli, M., Piccioni, P., Federici, F., & Polsinelli, M. (1995). Glucose oxidase overproducing mutants of Penicillium variabile (P16). FEMS Microbiology Letters, 128, 107–111.

    Article  CAS  Google Scholar 

  35. Pluschkell, S., Hellmuth, K., & Rinas, U. (1996). Kinetics of glucose oxidase excretion by recombinant Aspergillus niger. Biotechnology and Bioengineering, 51, 215–220.

    Article  Google Scholar 

  36. Ramón, R., Ferrer, P., & Valero, F. (2007). Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in Pichia pastoris. Journal of Biotechnology, 130, 39–46.

    Article  Google Scholar 

  37. Rando, D., Kohring, G.-W., & Giffhorn, F. (1997). Production, purification and characterization of glucose oxidase from a newly isolated strain of Penicillium pinophilum. Applied Microbiology and Biotechnology, 48, 34–40.

    Article  CAS  Google Scholar 

  38. Rocha, S. N., Abrahão-Neto, J., Cerdán, M. E., González-Siso, M. I. and Gombert, A. K. (2010). Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microbial Cell Factories, 9:4. doi: 10.1186/1475-2859-9-4

  39. Rutkowski, D. T., & Kaufman, R. J. (2004). A trip to the ER: coping with stress. Trends in Cell Biology, 14, 20–28.

    Article  CAS  Google Scholar 

  40. Sato, Y., & Inaba, K. (2012). Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. FEBS Journal, 279, 2262–2271.

    Article  CAS  Google Scholar 

  41. Sha, C., Yu, X.-W., Li, F., & Xu, Y. (2013). Impact of gene dosage on the production of lipase from Rhizopus chinensis CCTCC M201021 in Pichia pastoris. Applied Biochemistry and Biotechnology, 169, 1160–1172.

    Article  CAS  Google Scholar 

  42. Taboada-Puig, R., Junghanns, C., Demarche, P., Moreira, M., Feijoo, G., Lema, J., & Agathos, S. (2011). Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: Production, partial characterization and application for the elimination of endocrine disruptors. Bioresource Technology, 102, 6593–6599.

    Article  CAS  Google Scholar 

  43. Tu, B. P., & Weissman, J. S. (2004). Oxidative protein folding in eukaryotes mechanisms and consequences. Journal of Cell Biology, 164, 341–346.

    Article  CAS  Google Scholar 

  44. Wang, Z., Wang, Y., Zhang, D., Li, J., Hua, Z., Du, G., & Chen, J. (2010). Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation. Bioresource Technology, 101, 1318–1323.

    Article  CAS  Google Scholar 

  45. Xiao, A., Zhou, X., Zhou, L., & Zhang, Y. (2006). Improvement of cell viability and hirudin production by ascorbic acid in Pichia pastoris fermentation. Applied Microbiology and Biotechnology, 72, 837–844.

    Article  CAS  Google Scholar 

  46. Xie, J., Zhou, Q., Du, P., Gan, R., & Ye, Q. (2005). Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production. Enzyme and Microbial Technology, 36, 210–216.

    Article  CAS  Google Scholar 

  47. Yamaguchi, M., Tahara, Y., Nakano, A., & Taniyama, T. (2007). Secretory and continuous expression of Aspergillus niger glucose oxidase gene in Pichia pastoris. Protein Expression and Purification, 55, 273–278.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National High Technology Research and Development Program of China (863 Program, 2011AA100905), the Major State Basic Research Development Program of China (973 Program, 2013CB733902), Synergetic Innovation Center Of Food Safety and Nutrition, the Natural Science Foundation of Jiangsu Province (BK2012553), the China Postdoctoral Science Foundation(2013M540538), and the 111 Project (111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhang or Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Zhang, J., Liu, B. et al. High-Level Extracellular Production of Glucose Oxidase by Recombinant Pichia Pastoris Using a Combined Strategy. Appl Biochem Biotechnol 175, 1429–1447 (2015). https://doi.org/10.1007/s12010-014-1387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1387-z

Keywords

Navigation