Skip to main content
Log in

Regulation of Resveratrol Production in Vitis amurensis Cell Cultures by Calcium-Dependent Protein Kinases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Resveratrol is a naturally occurring plant stilbene that exhibits a wide range of valuable biological and pharmacological properties. Although the beneficial effects of trans-resveratrol to human health and plant protection against fungal pathogens are well-established, little is known about the molecular mechanisms regulating stilbene biosynthesis in plant cells. It has been recently shown that overexpression of the calcium-dependent protein kinase VaCPK20 gene considerably increased resveratrol accumulation in cell cultures of Vitis amurensis. It is possible that calcium-dependent protein kinases (CDPKs) play an important role in the regulation of resveratrol biosynthesis. In the present work, we investigated the effects of overexpression of other members of the CDPK multigene family (VaCPK9, VaCPK13, VaCPK21, and VaCPK29) on resveratrol accumulation and growth parameters of grape cell cultures. The obtained data show that overexpression of VaCPK29 increased resveratrol content 1.6–2.4-fold and fresh biomass accumulation 1.1–1.4-fold in the four independently transformed cell lines of V. amurensis compared with that in the empty vector-transformed calli. However, overexpression of the VaCPK9, VaCPK13, and VaCPK21 genes did not considerably affect resveratrol content and fresh/dry biomass accumulation in the independently transformed cell lines of V. amurensis. VaCPK29-transformed calli were capable of producing between 1.02 and 1.39 mg/l of resveratrol, while the control calli produced 0.48 to 0.79 mg/l of resveratrol. The data indicate that the VaCPK9, VaCPK13, and VaCPK21 genes are not involved in the regulation of stilbene biosynthesis in grape cells, while the VaCPK29 and VaCPK20 genes are implicated in resveratrol biosynthesis as positive regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kiselev, K. V. (2011). Perspectives for production and application of resveratrol. Applied Microbiology and Biotechnology, 90, 417–425.

    Article  CAS  Google Scholar 

  2. Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S., & Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Research, 24, 2783–2840.

    CAS  Google Scholar 

  3. Shankar, S., Singh, G., & Srivastava, R. K. (2007). Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Frontiers in Bioscience, 12, 4839–4854.

    Article  CAS  Google Scholar 

  4. Jeandet, P., Douillt-Breuil, A. C., Bessis, R., Debord, S., Sbaghi, M., & Adrian, M. (2002). Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Journal of Agricultural and Food Chemistry, 50, 2731–2741.

    Article  CAS  Google Scholar 

  5. Kostopoulou, Z., Therios, I., & Molassiotis, A. (2014). Resveratrol and its combination with a α-tocopherol mediate salt adaptation in citrus seedlings. Plant Physiology and Biochemistry, 78, 1–9.

    Article  CAS  Google Scholar 

  6. Langcake, P., & Pryce, R. J. (1976). The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiology and Plant Pathology, 9, 77–86.

    Article  CAS  Google Scholar 

  7. Adrian, M., & Jeandet, P. (2006). Trans-resveratrol as an antifungal agent. In B. B. Aggarwal & S. Shishodia (Eds.), Resveratrol in health and disease (pp. 475–497). Boca Raton: CRC Press.

    Google Scholar 

  8. Chang, X., Heene, E., Qiao, F., & Nick, P. (2011). The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell. PloS One, 6(10), e26405.

    Article  CAS  Google Scholar 

  9. Ku, K. L., Chang, P. S., Cheng, Y. C., & Lien, C. Y. (2005). Production of stilbenoids from the callus of Arachis hypogaea: a novel source of the anticancer compound piceatannol. Journal of Agricultural and Food Chemistry, 53, 3877–3881.

    Article  CAS  Google Scholar 

  10. Wang, W., Tang, K., Yang, H. R., Wen, P. F., Zhang, P., Wang, H. L., & Huang, W. D. (2010). Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiology and Biochemistry, 48, 142–152.

    Article  CAS  Google Scholar 

  11. Langcake, P., & Pryce, R. J. (1977). A new class of phytoalexins from grapevines. Experientia, 33, 151–152.

    Article  CAS  Google Scholar 

  12. Rupprich, N., Hildebrand, H., & Kindl, H. (1980). Substrate specificity in vivo and in vitro in the formation of stilbenes—biosynthesis of rhaponticin. Archives of Biochemistry and Biophysics, 200, 72–78.

    Article  CAS  Google Scholar 

  13. Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1–20.

    Article  CAS  Google Scholar 

  14. Patra, B., Schluttenhofer, C., Wu, Y., Pattanaik, S., & Yuan, L. (2013). Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica et Biophysica Acta, 1829, 1236–1247.

    Article  CAS  Google Scholar 

  15. Holl, J., Vannozzi, A., Czemmel, S., D’Onofrio, C., Walker, A. R., Rausch, T., Lucchin, M., Boss, P. K., Dry, I. B., & Bogs, J. (2013). The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell, 25(10), 4135–4149.

    Article  Google Scholar 

  16. Fang, L., Hou, Y., Wang, L., Xin, H., Wang, N., & Li, S. (2014). Myb14, a direct activator of STS, is associated with resveratrol content variation in berry skin in two grape cultivars. Plant Cell Reports. doi:10.1007/s00299-014-1642-3.

    Google Scholar 

  17. Kiselev, K. V., Tyunin, A. P., & Zhuravlev, Y. N. (2013). Involvement of DNA methylation in the regulation of STS10 gene expression in Vitis amurensis. Planta, 237, 933–941.

    Article  CAS  Google Scholar 

  18. Tyunin, A. P., Kiselev, K. V., & Karetin, Y. A. (2013). Differences in the methylation patterns of the VaSTS1 and VaSTS10 genes of Vitis amurensis Rupr. Biotechnology Letters, 35, 1525–1532.

    Article  CAS  Google Scholar 

  19. Dubrovina, A. S., Kiselev, K. V., Veselova, M. V., Isaeva, G. A., Fedoreyev, S. A., & Zhuravlev, Y. N. (2009). Enhanced resveratrol accumulation in rolB transgenic cultures of Vitis amurensis correlates with unusual changes in CDPK gene expression. Journal of Plant Physiology, 166, 1194–1206.

    Article  CAS  Google Scholar 

  20. Kiselev, K. V., Shumakova, O. A., Manyakhin, A. Y., & Mazeika, A. N. (2012). Influence of calcium influx induced by the calcium ionophore, A23187, on resveratrol content and the expression of CDPK and STS genes in the cell cultures of Vitis amurensis. Plant Growth Regulation, 68, 371–381.

    Article  CAS  Google Scholar 

  21. Kiselev, K. V., Shumakova, O. A., & Manyakhin, A. Y. (2013). Effects of the calmodulin antagonist W7 on resveratrol biosynthesis in Vitis amurensis Rupr. Plant Molecular Biology Reporter, 31, 1569–1575.

    Article  CAS  Google Scholar 

  22. Dixit, A. K., & Chelliah, J. (2013). Molecular cloning, overexpression, and characterization of autophosphorylation in calcium-dependent protein kinase 1 (CDPK1) from Cicer arietinum. Applied Microbiology and Biotechnology, 97, 3429–3439.

    Article  CAS  Google Scholar 

  23. Cheng, S. H., Willmann, M. R., Chen, H. C., & Sheen, J. (2002). Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiology, 129, 469–485.

    Article  CAS  Google Scholar 

  24. Asano, T., Tanaka, N., Yang, G., Hayashi, N., & Komatsu, S. (2005). Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiology, 46, 356–366.

    Article  CAS  Google Scholar 

  25. Ray, S., Agarwal, P., Arora, R., Kapoor, S., & Tyagi, A. K. (2007). Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Molecular Genetics and Genomics, 278, 493–505.

    Article  CAS  Google Scholar 

  26. Xiong, L. Z., & Yang, Y. N. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 15, 745–759.

    Article  CAS  Google Scholar 

  27. Aleynova-Shumakova, O. A., Dubrovina, A. S., Manyakhin, A. Y., Karetin, Y. A., & Kiselev, K. V. (2014). VaCPK20 gene overexpression significantly increased resveratrol content and expression of stilbene synthase genes in cell cultures of Vitis amurensis Rupr. Applied Microbiology and Biotechnology, 98, 5541–5549.

    Article  CAS  Google Scholar 

  28. Cheng, S. H., Sheen, J., Gerrish, C., & Bolwell, G. P. (2001). Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Letters, 503, 185–188.

    Article  CAS  Google Scholar 

  29. Kiselev, K. V., Dubrovina, A. S., & Bulgakov, V. P. (2009). Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. Applied Microbiology and Biotechnology, 82, 647–655.

    Article  CAS  Google Scholar 

  30. Tzfira, T., Tian, G. W., Lacroix, B., Vyas, S., Li, J., Leitner-Dagan, Y., Krichevsky, A., Taylor, T., Vainstein, A., & Citovsky, V. (2005). pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Molecular Biology, 57, 503–516.

    Article  CAS  Google Scholar 

  31. Kiselev, K. V., Dubrovina, A. S., Shumakova, O. A., Karetin, Y. A., & Manyakhin, A. Y. (2013). Structure and expression profiling of a novel calcium-dependent protein kinase gene, CDPK3a, in leaves, stems, grapes, and cell cultures of wild-growing grapevine Vitis amurensis Rupr. Plant Cell Reports, 32, 431–442.

    Article  CAS  Google Scholar 

  32. Dubrovina, A. S., Kiselev, K. V., & Khristenko, V. S. (2013). Expression of calcium-dependent protein kinase (CDPK) genes under abiotic stress conditions in wild-growing grapevine Vitis amurensis. Journal of Plant Physiology, 170, 1491–1500.

    Article  CAS  Google Scholar 

  33. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  34. Bekesiova, I., Nap, J. P., & Mlynarova, L. (1999). Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Molecular Biology Reporter, 17, 269–277.

    Article  CAS  Google Scholar 

  35. Kiselev, K. V., & Dubrovina, A. S. (2010). А new method for analysing gene expression based on frequency analysis of RT-PCR products obtained with degenerate primers. Acta Physiologiae Plantarum, 32, 495–502.

    Article  CAS  Google Scholar 

  36. Shumakova, O. A., Manyakhin, A. Y., & Kiselev, K. V. (2011). Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in cell cultures of Vitis amurensis treated with coumaric acid. Applied Biochemistry and Biotechnology, 165, 1427–1436.

    Article  CAS  Google Scholar 

  37. Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., & Mathieu, C. (2001). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods, 25, 386–401.

    Article  CAS  Google Scholar 

  38. Dubrovina, A. S., Manyakhin, A. Y., Zhuravlev, Y. N., & Kiselev, K. V. (2010). Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis. Applied Microbiology and Biotechnology, 88, 727–736.

    Article  CAS  Google Scholar 

  39. Lecourieux, D., Ranjeva, R., & Pugin, A. (2006). Calcium in plant defence-signalling pathways. New Phytologist, 171, 249–269.

    Article  CAS  Google Scholar 

  40. Ramani, S., & Chelliah, J. (2007). UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biology, 7, 61.

    Article  Google Scholar 

  41. Preisig, C. L., & Moreau, R. A. (1994). Effects of potential signal-transduction antagonists on phytoalexin accumulation in tobacco. Phytochemistry, 36, 857–863.

    Article  CAS  Google Scholar 

  42. Tassoni, A., Fornale, S., Franceschetti, M., Musiani, F., Michael, A. J., Perry, B., & Bagni, N. (2005). Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures. New Phytologist, 166, 895–905.

    Article  CAS  Google Scholar 

  43. Kiselev, K. V., Dubrovina, A. S., Veselova, M. V., Bulgakov, V. P., Fedoreyev, S. A., & Zhuravlev, Y. N. (2007). The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. Journal of Biotechnology, 128, 681–692.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Russian Scientific Foundation (14-14-00366). We are grateful to Professor Alexander Krichevsky (State University of New York, Stony Brook, USA) for providing pSAT1 and pZP-RCS2-nptII plasmid samples and A. tumefaciens GV3101::pMP90 strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kiselev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleynova, O.A., Dubrovina, A.S., Manyakhin, A.Y. et al. Regulation of Resveratrol Production in Vitis amurensis Cell Cultures by Calcium-Dependent Protein Kinases. Appl Biochem Biotechnol 175, 1460–1476 (2015). https://doi.org/10.1007/s12010-014-1384-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1384-2

Keywords

Navigation