Skip to main content
Log in

A Substrate-Based Approach for the Selection of Oil-Bearing Heterotrophs from Nitrogen-Deficient Soil for Lipid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, nine heterotrophic yeast isolates were tested for their ability to assimilate crude glycerol and consecutive conversion to triacylglycerides (TGAs). All the organisms were initially screened on crude glycerol-based selection media, and those producing lipid globules were further evaluated for lipid production. Sudan Black B staining of eight isolates showed lipid globules. These strains were further studied at different C/N ratio. The molecular identification revealed that the isolates belonged to the genera of Yarrowia and Candida. Among these isolates, SKY7 (Yarrowia lipolytica) produced up to 42.04 ± 0.11 % of lipid w/w) with a C/N ratio of 100 and fermentation time of 72 h. The other strains produced 5.82 ± 0.4 to 34.57 ± 0.44 % lipid (w/w). The GC-flame ionization detector (FID) lipid profile showed that the lipid produced by the strains had close resemblance with vegetable oil and could serve as a feedstock for biodiesel production. Biolog test of the isolates revealed a wide spectrum of carbon utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Almeida, J. R., Favaro, L. C., & Quirino, B. F. (2012). Biotechnology for Biofuels, 5, 48.

  2. Papanikolaou, S., & Aggelis, G. (2002). Bioresource Technology, 82, 43–49.

  3. Mu, Y., Xiu, Z.-L., & Zhang, D.-J. (2008). Biochemical Engineering Journal, 40, 537–541.

  4. Huijberts, G. N. M., & Eggink, G. (1996). Applied Microbiology and Biotechnology, 45, 575–579.

  5. Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2008). Journal of Agricultural and Food Chemistry, 56, 2668–2675.

  6. Mothes, G., Schnorpfeil, C., & Ackermann, J. U. (2007). Engineering in Life Sciences, 7, 475–479.

  7. Papanikolaou, S., & Aggelis, G. (2009). Lipid Technology, 21, 83–87.

  8. Lin, Y.-H., Luo, J.-J., John Hwang, S.-C., Liau, P.-R., Lu, W.-J., & Lee, H.-T. (2011). Biomass and Bioenergy, 35, 2217–2223.

  9. Gwendoline Christophe, V. K., Nouaille, R., Gaudet, G., Pierre, A. P., Fontanille, A. P., Soccol, C. R., & Larroche, C. (2012). Brazilian Archives of Biology and Technology, 55, 29–46.

    Article  Google Scholar 

  10. Azocar, L., Ciudad, G., Heipieper, H. J., & Navia, R. (2010). Applied Microbiology and Biotechnology, 88, 621–636.

    Article  CAS  Google Scholar 

  11. Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Applied Microbiology and Biotechnology, 90, 1219–1227.

    Article  CAS  Google Scholar 

  12. Kitcha, S., & Cheirsilp, B. (2011). Energy Procedia, 9, 274–282.

    Article  Google Scholar 

  13. Kornelia Smalla, U. W., Heuer, H., Liu, W.-T., & Forney, L. (1998). Applied and Environmental Microbiology, 64, 1220–1225.

    Google Scholar 

  14. Zhou, J., Bruns, M. A., & Tiedje, J. M. (1996). Applied and Environmental Microbiology, 62, 316–322.

    CAS  Google Scholar 

  15. Sequerra, J., Marmeisse, R., Valla, G., Normand, P., Capellano, A., & Moiroud, A. (1997). Mycological Research, 101, 465–472.

    Article  CAS  Google Scholar 

  16. Browse, J., McCourt, P. J., & Somerville, C. R. (1986). Analytical Biochemistry, 152, 141–145.

    Article  CAS  Google Scholar 

  17. Bondioli, P., & Della Bella, L. (2005). European Journal of Lipid Science and Technology, 107, 153–157.

  18. Garland, J. L., & Mills, A. L. (1991). Applied and Environmental Microbiology, 57, 2351–2359.

  19. Rehm, H. J., & Ratledge, G. R. C. (2008). Microbial lipids. Biotechnology: products of 16 secondary. Metabolism, 7, 135–142.

    Google Scholar 

  20. Taccari, M., Canonico, L., Comitini, F., Mannazzu, I., & Ciani, M. (2012). Bioresource Technology, 110, 488–495.

    Article  CAS  Google Scholar 

  21. Chatzifragkou, A., & Papanikolaou, S. (2012). Applied Microbiology and Biotechnology, 95, 13–27.

  22. Makri, A., Fakas, S., & Aggelis, G. (2010). Bioresource Technology, 101, 2351–2358.

    Article  CAS  Google Scholar 

  23. Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C., & Nicaud, J. M. (2009). Yarrowia lipolytica as Progress in Lipid Research, 48, 375–387.

  24. Jacob, Z., & Krishnamurthy, M. (1990). Journal of the American Oil Chemists, 67, 642–645.

Download references

Acknowledgments

Authors would like to acknowledge the Natural Sciences and Engineering Research Council of Canada (grant A4984, strategic grant 412994-11, Canada Research Chairs) for financial support. We are grateful to technical staffs of INRS-ETE, for their timely help to analyze the samples on GC-FID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeshwar Dayal Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuttiraja, M., Krishna, S., Dhouha, A. et al. A Substrate-Based Approach for the Selection of Oil-Bearing Heterotrophs from Nitrogen-Deficient Soil for Lipid Production. Appl Biochem Biotechnol 175, 1926–1937 (2015). https://doi.org/10.1007/s12010-014-1378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1378-0

Keywords

Navigation