Skip to main content

Advertisement

Log in

Overexpression of Granulocyte Macrophage Colony Stimulating Factor in Breast Cancer Cells Leads Towards Drug Sensitization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This report describes the effect of overexpressing granulocyte macrophage colony stimulating factor (GMCSF) in breast cancer cells, which otherwise is involved in proliferation and differentiation of granulocyte and macrophage lineages. The purified recombinant GMCSF cytokine is known to exert dose-dependent proliferative response on various cancer cells, but its effect during overexpression is yet to be evaluated. In our present study, we have generated MCF-7 (breast cancer) cells overexpressing GMCSF. Interestingly, cell viability studies showed pronounced sensitivity of GMCSF overexpressing MCF-7 cells towards anticancer drugs, such as, doxorubicin, 5FU and cisplatin. These findings were substantiated by cell cycle analysis of the drug-treated GMCSF overexpressing MCF-7 cells. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) results revealed differential expressions of cyclins, and the carboxyfluorescein succinimidyl ester (CFSE)-based assay established decrease in doubling time of GMCSF overexpressed cells with respect to the control populations. Thus, overexpressing of proliferative GMCSF cytokine in breast cancer cells may increase susceptibility to anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maraskovsky, E., Chen, W. F., & Shortman, K. (1989). Journal of Immunology, 143, 1210–1214.

    CAS  Google Scholar 

  2. Nathan, C. F., & Hibbs, J. B. (1991). Current Opinion in Immunology, 3, 65–70.

    Article  CAS  Google Scholar 

  3. Takahashi, Y., Kitadai, Y., Bucana, C. D., Cleary, K. R., & Ellis, L. M. (1995). Cancer Research, 55, 3964–3968.

    CAS  Google Scholar 

  4. Bach, E. A., Aguet, M., & Schreiber, R. D. (1997). Annual Review of Immunology, 15, 563–591.

    Article  CAS  Google Scholar 

  5. Fonsatti, E., Altomonte, M., Coral, S., Cattarossi, I., Nicotra, M. R., Gasparollo, A., Natali, P. G., & Maio, M. (1997). British Journal of Cancer, 76, 1255–1261.

    Article  CAS  Google Scholar 

  6. Avanzi, G. C., Gallicchio, M., & Saglio, G. (1998). Biotherapy, 10, 299–308.

    Article  CAS  Google Scholar 

  7. Andréll, J., & Tate, C. G. (2013). Molecular Membrane Biology, 30, 52–63.

    Article  Google Scholar 

  8. Grisshammer, R., & Tate, C. G. (1995). Quarterly Reviews of Biophysics, 28, 315–422.

    Article  CAS  Google Scholar 

  9. Tate, C. G. (2001). FEBS Letters, 504, 94–98.

    Article  CAS  Google Scholar 

  10. Wagner, S., Bader, M. L., Drew, D., & de Gier, J.-W. (2006). Trends in Biotechnology, 24, 364–371.

    Article  CAS  Google Scholar 

  11. Midgett, C. R., & Madden, D. R. (2007). Journal of Structural Biology, 160, 265–274.

    Article  CAS  Google Scholar 

  12. Dostalova, Z., Liu, A., Zhou, X., Farmer, S. L., Krenzel, E. S., Arevalo, E., Desai, R., Feinberg-Zadek, P. L., Davies, P. A., Yamodo, I. H., et al. (2010). Protein Science, 19, 1728–1738.

    Article  CAS  Google Scholar 

  13. Mezzano, S. A., Droguett, M. A., Burgos, M. E., Ardiles, L. G., Aros, C. A., Caorsi, I., & Egido, J. (2000). Kidney International, 57, 147–158.

    Article  CAS  Google Scholar 

  14. Parmiani, G., Castelli, C., Pilla, L., Santinami, M., Colombo, M., & Rivoltini, L. (2006). Annals of Oncology, 18, 226–232.

    Article  Google Scholar 

  15. Bauer, K. (1977). Naunyn Schmiedebergs Arch. Pharmacol., 297(Suppl 1), S55–S56.

    Google Scholar 

  16. Belardelli, F., & Ferrantini, M. (2002). Trends in Immunology, 23, 201–208.

    Article  CAS  Google Scholar 

  17. Gasson, J. C., Kaufman, S. E., Weisbart, R. H., Tomonaga, M., & Golde, D. W. (1986). Proceedings of the National academy of Sciences of the United States of America, 83, 669–673.

    Article  CAS  Google Scholar 

  18. Li, D. Y., Eberspächer, J., Wagner, B., Kuntzer, J., & Lingens, F. (1991). Applied and Environmental Microbiology, 57, 1920–1928.

    CAS  Google Scholar 

  19. Chaubey, N., & Ghosh, S. S. (2013). Applied Biochemistry and Biotechnology, 169, 1713–1726.

    Article  CAS  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  21. Mosmann, T. (1983). Journal of Immunological Methods, 65, 55–63.

    Article  CAS  Google Scholar 

  22. Riccardi, C., & Nicoletti, I. (2006). Nature Protocols, 1, 1458–1461.

    Article  CAS  Google Scholar 

  23. Quah, B. J. C., Warren, H. S., & Parish, C. R. (2007). Nature Protocols, 2, 2049–2056.

    Article  CAS  Google Scholar 

  24. Chung, H., Chaudhry, J., Lopez, C. G., & Carethers, J. M. (2010). Cancer Biology & Therapy, 10, 1147–1156.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by Department of Biotechnology (no. BT/01/NE/PS/08) and Department of Electronics and Information Technology, Government of India for financial support (no. 5(9)/2012-NANO (Vol. II)). The authors acknowledge the assistance from the Central Instruments Facility (CIF) and the Centre for Nanotechnology, IIT Guwahati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Sankar Ghosh.

Additional information

Research Highlights

1. Granulocyte macrophage colony stimulating factor (GMCSF) expressing breast cancer (MCF-7) cell line was generated.

2. Expression of GMCSF cytokine was confirmed by semiquantitative PCR and Western blot analysis.

3. GMCSF overexpressing cells were found to be sensitive to chemotherapeutic drugs such as 5FU, cisplatin and doxorubicin.

4. Flow cytometry experiments revealed cell cycle arrests during drug treatment on GMCSF overexpressing cancer cells.

5. Cyclin expression profile and reduction in doubling time corroborated cell cycle arrest leading to drug sensitization of GMCSF overexpressing cells.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaubey, N., Ghosh, S.S. Overexpression of Granulocyte Macrophage Colony Stimulating Factor in Breast Cancer Cells Leads Towards Drug Sensitization. Appl Biochem Biotechnol 175, 1948–1959 (2015). https://doi.org/10.1007/s12010-014-1373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1373-5

Keywords

Navigation