Skip to main content
Log in

Improving Enzymatic Hydrolysis of Corn Stover Pretreated by Ethylene Glycol-Perchloric Acid-Water Mixture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To improve the enzymatic saccharification of lignocellulosic biomass, a mixture of ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) was used for pretreating corn stover in this study. After the optimization in oil-bath system, the optimum pretreatment temperature and time were 130 °C and 30 min, respectively. After the saccharification of 10 g/L pretreated corn stover for 48 h, the saccharification rate was obtained in the yield of 77.4 %. To decrease pretreatment temperature and shorten pretreatment time, ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) media under microwave irradiation was employed to pretreat corn stover effectively at 100 °C and 200 W for 5 min. Finally, the recovered hydrolyzates containing glucose obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. These results would be helpful for developing a cost-effective pretreatment combined with enzymatic saccharification of cellulosic materials for the production of lignocellulosic ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bi, D., Chu, D. Q., Zhu, P., Lu, C. Y., Fan, C., Zhang, J., & Bao, J. (2011). Utilization of dry distiller’s grain and soluble as nutrient supplement in the simultaneous saccharification and ethanol fermentation at high solids loading of corn stover. Biotechnology Letters, 33, 273–276.

    Article  CAS  Google Scholar 

  2. Imman, S., Arnthong, J., Burapatana, V., Laosiripojana, N., & Champreda, V. (2013). Autohydrolysis of tropical agricultural residues by compressed liquid hot water pretreatment. Applied Biochemistry and Biotechnology, 170, 1982–1995.

    Article  CAS  Google Scholar 

  3. Adsul, M. G., Singhvi, M. S., Gaikaiwari, S. A., & Gokhale, D. V. (2011). Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresource Technology, 102, 4304–4312.

    Article  CAS  Google Scholar 

  4. Dong, H. W., & Bao, J. (2010). Biofuel via biodetoxification (News and Views). Nature Chemical Biology, 6, 316–318.

    Article  CAS  Google Scholar 

  5. Qing, Q., Hu, R., He, Y. C., Zhang, Y., & Wang, L. Q. (2014). Investigation of a novel acid-catalyzed ionic liquid pretreatment method to improve biomass enzymatic hydrolysis conversion. Applied Microbiology and Biotechnology, 98, 5275–5286.

    Article  CAS  Google Scholar 

  6. Chu, D. Q., Zhang, J., & Bao, J. (2012). Simultaneous saccharification and ethanol fermentation of corn stover at high temperature and high solids loading by a thermotolerant strain Saccharomyces cerevisiae DQ1. Bioenergy Research, 5, 1020–1026.

    Article  CAS  Google Scholar 

  7. Jing, X. Y., Zhang, X. X., & Bao, J. (2009). Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Applied Biochemistry and Biotechnology, 159, 696–707.

    Article  CAS  Google Scholar 

  8. Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4961.

    Article  CAS  Google Scholar 

  9. Li, Q., He, Y. C., Xian, M., Jun, G., Xu, X., Yang, J. M., & Li, L. Z. (2009). Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, 100, 3570–3575.

    Article  CAS  Google Scholar 

  10. He, Y. C., Gong, L., Liu, F., Lu, T., Qing, Q., Wang, L. Q., Zhang, Y., Gao, F. T., & Wang, X. (2014). Waste biogas residue from cassava dregs as carbon source to produce Galactomyces sp. CCZU11-1 cellulase and its enzymatic saccharification. Applied Biochemistry and Biotechnology, 173, 894–903.

    Article  CAS  Google Scholar 

  11. Kumar, R., & Wyman, C. E. (2009). Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnology Progress, 25, 807–819.

    Article  CAS  Google Scholar 

  12. Li, L. H., Kong, X. Y., Yang, F. Y., Li, D., Yuan, Z. H., & Sun, Y. M. (2012). Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Applied Biochemistry and Biotechnology, 166, 1183–1191.

    Article  CAS  Google Scholar 

  13. Sindhu, R., Binod, P., Satyanagalakshmi, K., Janu, K. U., Sajna, K. V., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Applied Biochemistry and Biotechnology, 162, 2313–2323.

    Article  CAS  Google Scholar 

  14. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  15. Zhao, X. B., Zhou, Y. J., Zheng, G. J., & Liu, D. H. (2010). Microwave pretreatment of substrates for cellulase production by solid-state fermentation. Applied Biochemistry and Biotechnology, 160, 1557–1571.

    Article  CAS  Google Scholar 

  16. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  17. Yoo, C. G., Wang, C., Yu, C. X., & Kim, T. H. (2013). Enhancement of enzymatic hydrolysis and klason lignin removal of corn stover using photocatalyst-assisted ammonia pretreatment. Applied Biochemistry and Biotechnology, 169, 1648–1658.

    Article  CAS  Google Scholar 

  18. Kim, S. B., Kim, J. S., Lee, J. H., Kang, S. W., Park, C., & Kim, S. W. (2011). Pretreatment of rice straw by proton beam irradiation for efficient enzyme digestibility. Applied Biochemistry and Biotechnology, 164, 1183–1191.

    Article  CAS  Google Scholar 

  19. Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology, 102, 10915–10921.

    Article  CAS  Google Scholar 

  20. Martin, E., Duke, J., Pelkki, M., Clausen, E. C., & Carrier, D. J. (2010). Sweetgum (Liquidambar styraciflua L.): extraction of shikimic acid coupled to dilute acid pretreatment. Applied Biochemistry and Biotechnology, 162, 1660–1668.

    Article  CAS  Google Scholar 

  21. He, Y. C., Xia, D. Q., Ma, C. L., Gong, L., Gong, T., Wu, M. X., Zhang, Y., Tang, Y. J., Xu, J. H., & Liu, Y. Y. (2013). Enzymatic saccharification of sugarcane bagasse by N-methylmorpholine-N-oxide-tolerant cellulase from a newly isolated Galactomyces sp. CCZU11-1. Bioresource Technology, 135, 18–22.

    Article  CAS  Google Scholar 

  22. Kim, T. H., Nghiem, N. P., & Hicks, K. B. (2009). Pretreatment and fractionation of corn stover by soaking in ethanol and aqueous ammonia. Applied Biochemistry and Biotechnology, 153, 171–179.

    Article  CAS  Google Scholar 

  23. Sun, F. B., & Chen, H. Z. (2008). Enhanced enzymatic hydrolysis of wheat straw by aqueous 17 glycerol pretreatment. Bioresource Technology, 99, 6156–6161.

    Article  CAS  Google Scholar 

  24. Cheng, K. K., Zhang, J. A., Ping, W. X., Ge, J. P., Zhou, Y. J., Ling, H. Z., & Xu, J. M. (2008). Sugarcane bagasse mild alkaline/oxidative pretreatment for ethanol production by alkaline recycle process. Applied Biochemistry and Biotechnology, 151, 43–50.

    Article  CAS  Google Scholar 

  25. Tai, C., & Keshwani, D. (2014). Impact of pretreatment with dilute sulfuric acid under moderate temperature on hydrolysis of corn stover with two enzyme systems. Applied Biochemistry and Biotechnology, 172, 2628–2639.

    Article  CAS  Google Scholar 

  26. Farone, W.A., Cuzens, J.E. (1997) Strong acid hydrolysis of cellulosic and hemicellulosic materials. US Patent, US5,597,714.

  27. Jose, C.C., Maria, D.C.A., Joseph, M. (1985). Process and installation for obtaining ethanol by the continuous acid hydrolysis of cellulosic materials. US Patent, US4,529,699.

  28. Arifin, Z., & Teoh T.C. (2011). A conversion of cellulosic materials into glucose for use in bioethanol production. US Patent, US20,110,281,317 A1.

  29. Fan, S. P., Jiang, L. Q., Chia, C. H., Fang, Z., Zakaria, S., & Chee, K. L. (2014). High yield production of sugars from deproteinated palm kernel cake under microwave irradiation via dilute sulfuric acid hydrolysis. Bioresource Technology, 153, 69–78.

    Article  CAS  Google Scholar 

  30. Yamada, T., & Ono, H. (1999). Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technology, 70, 61–67.

    Article  CAS  Google Scholar 

  31. Zhang, T., Zhou, Y. J., Liu, D. L., & Petrus, L. (2007). Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresource Technology, 98, 1454–1459.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21102011), the Natural Science Foundation of Jiangsu Province (No. BK20141172) and the Open Project Program of the State Key Laboratory of Bioreactor Engineering, and the Key Laboratory of Guangxi Biorefinery (No. GXBF11-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cai He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YC., Liu, F., Gong, L. et al. Improving Enzymatic Hydrolysis of Corn Stover Pretreated by Ethylene Glycol-Perchloric Acid-Water Mixture. Appl Biochem Biotechnol 175, 1306–1317 (2015). https://doi.org/10.1007/s12010-014-1353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1353-9

Keyword

Navigation