Skip to main content
Log in

Production and Characterization of β-glucosidase Obtained by the Solid-State Cultivation of the Thermophilic Fungus Thermomucor indicae-seudaticae N31

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, several agro-industrial wastes (soybean meal and wheat straw, rice and peanut husks, corn cob and corn stover, and sugarcane bagasse) were tested for the production of β-glucosidase by the cultivation of thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state fermentation (SSF). Among the tested substrates, the highest yields were obtained in soybean meal. Other fermentation parameters were also evaluated, such as initial pH, merge substrates, and fermentation time, as well as the physicochemical characterization of the enzyme. The best results were obtained after 192 h of fermentation with the initial pH adjusted to 6.0. The substrate mixture did not improve the enzyme production by microorganism. The β-glucosidase showed best catalytic activity at pH 4.5 and at 75 °C and remained stable in the pH range from 4.5 to 9.5 and the temperature range 40–75 °C. The enzyme showed 80 % of its activity at a concentration of 15 mM glucose and remained stable up to 20 % ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhattacharya, D., Germinario, L. T., & Winter, W. T. (2008). Carbohydrate Polymers, 73, 371–377.

    Article  CAS  Google Scholar 

  2. Schuchardt, U., Ribeiro, M., & Gonçalves, A. R. (2001). Quimica Nova, 24, 247–251.

    Article  CAS  Google Scholar 

  3. Daroit, D. J., Silveira, S. T., Hertz, P. F., & Brandelli, A. (2007). Process Biochemistry, 42, 904–908.

    Article  CAS  Google Scholar 

  4. Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). CRC Critical Reviews in Biotechnology, 22, 375–407.

    Article  CAS  Google Scholar 

  5. Barbagallo, R. N., Spagna, G., Palmeria, R., Restuccia, C., & Giudicib, P. (2004). Enzyme and Microbial Technology, 35, 58–66.

    Article  CAS  Google Scholar 

  6. Hernandez, L. F., Espinosa, J. C., Fernandez-Gonzalez, M., & Briones, A. (2003). International Journal of Food Microbiology, 80, 171–176.

    Article  CAS  Google Scholar 

  7. Spagna, G., et al. (2002). Journal of the Science of Food and Agriculture, 82, 1867–1874.

    Article  CAS  Google Scholar 

  8. Villena, M. A., Iranzo, J. F. U., Gundllapalli, S. B., Otero, R. R. C., & Pérez, A. I. B. (2006). Enzyme Microbial Technology, 39, 229–234.

    Article  Google Scholar 

  9. Otieno, D. O., & Shah, N. P. (2007). Journal of Applied Microbiology, 103, 910–912.

    Article  CAS  Google Scholar 

  10. Chung, H., Hogan, S., Zhang, L., Rainey, K., & Zhou, K. (2008). Journal of Agricultural and Food Chemistry, 56, 23.

    Google Scholar 

  11. Parry, N. J., Beever, D. E., Owen, E., Vandenbergue, I., & Van Beeumen, J. (2001). Biochemistry Journal, 353, 117–127.

    Article  CAS  Google Scholar 

  12. Iembo, T., et al. (2002). Applied Biochemistry and Microbiology, 38, 549–552.

    Article  CAS  Google Scholar 

  13. Zanoelo, F. F., Polizeli, M. L., & Jorge, J. A. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 170–176.

    Article  CAS  Google Scholar 

  14. Leite, R. S. R., Alves-Prado, H. F., Cabral, H., Pagnocca, F. C., Gomes, E., & Da-Silva, R. (2008). Enzyme and Microbial Technology, 43, 391–395.

    Article  CAS  Google Scholar 

  15. Ferrarezi, A. L., Chiachio-Egea, T., Zortarelli-Filho, I. J., Bonilla-Rodrigues, G. O., Da-Silva, R., & Gomes, E. (2009). New Biotechnology, 25, 89.

    Article  Google Scholar 

  16. Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2009). Process Biochemistry, 45, 120–128.

    Article  Google Scholar 

  17. Jecu, L. (2000). Industrial Crop Production, 11, 1–5.

    Article  CAS  Google Scholar 

  18. Leite, R. S. R., Bocchini, D. A., Martins, E. S., Silva, D., Gomes, E., & Silva, R. (2007). Applied Biochemistry and Biotechnology, 137, 281–288.

    Google Scholar 

  19. I-Son, N., Chen-Wei, L., Shuang-Pi, C., Jiun-Ly, C., Po, T. C., Chii-Gong, T., Su-May, Y., & Tuan-Hua, D. H. (2010). Bioresource Technology, 10, 1310–1317.

    Google Scholar 

  20. Gomes, E., Guez, M. A. U., Martin, N., & Da-Silva, R. (2007). Quimica Nova, 30, 136–145.

    Article  CAS  Google Scholar 

  21. Cardona, C. A., & Sanchez, O. J. (2007). Bioresource Technology, 98, 2415–2457.

    Article  CAS  Google Scholar 

  22. Saha, B. C., Freer, S. N., & Bothast, R. J. (1994). Applied and Environmental Microbiology, 60, 3774–3780.

    CAS  Google Scholar 

  23. Marques, P. R. B. O., & Yamanaka, H. (2008). Quimica Nova, 7, 1791–1799.

    Article  Google Scholar 

  24. Pitson, S. M., Seviour, R. J., & McDougall, B. M. (1997). Enzyme and Microbial Technology, 21, 182–190.

    Article  CAS  Google Scholar 

  25. Le Traon-Masson, M.-P., & Pellerin, P. (1998). Enzyme Microbial Technology, 22, 374–382.

    Article  Google Scholar 

  26. Mamma, D., Hatzinikolaou, D. G., & Christakopoulos, P. (2004). Journal of Molecular Catalysis B: Enzymatic, 27, 183–190.

    Article  CAS  Google Scholar 

  27. Eyzaguirre, J.; Hidalgo, M.; Leschot, A. (2005). In: Taylor & Francis Group, LLC. Handbook of Carbohydrate Engineering, Charpter 23, 645–675.

  28. Herr, D., Baumer, F., & Dellweg, H. (1978). European Journal of Applied Microbiology and Biotechnology, 5, 29–36.

    Article  CAS  Google Scholar 

  29. Desai, J. D., Ray, R. M., & Patel, N. P. (1983). Biotechnology and Bioengineering, 25, 307–313.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Pesquisa (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josiani de Cassia Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cassia Pereira, J., Leite, R.S.R., do Prado, H.F.A. et al. Production and Characterization of β-glucosidase Obtained by the Solid-State Cultivation of the Thermophilic Fungus Thermomucor indicae-seudaticae N31. Appl Biochem Biotechnol 175, 723–732 (2015). https://doi.org/10.1007/s12010-014-1332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1332-1

Keywords

Navigation