Skip to main content
Log in

A New Thermostable and Organic Solvent-Tolerant Lipase from Staphylococcus warneri; Optimization of Media and Production Conditions Using Statistical Methods

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new thermostable and solvent-tolerant lipase was isolated from newly isolated Staphylococcus warneri from oil-contaminated soil. Optimization of the fermentation media for production of thermostable and organic solvent-tolerant lipase was carried out using two statistical methods, i.e., Plackett–Burman design (PBD) and central composite design (CCD) were used for the optimization of the media components. PBD was used to efficiently select important medium components affecting the lipase production. Out of 15 medium components screened, four components, i.e., olive oil, peptone, maltose, and K2HPO4 were found to contribute positively to lipase production. CCD and response surface methodology (RSM) were used to determine the optimum levels of the selected components using Design-Expert 8.0 software. Production medium with olive oil (1.45 %), peptone (0.28 %), maltose (0.054 %), and K2HPO4 (0.091 %) was optimized with a maximum lipase production of 10.43 IU/ml/min. Similarly, production conditions for the lipase production were optimized by using CCD and RSM. Optimized conditions were found to have an incubation temperature of 55 °C, medium pH of 8.0, agitation of 120 rpm, and inoculum volume of 2 %. RSM revealed the maximum lipase production of 17.21 IU/ml using these optimized production conditions. Crude lipase showed enhanced activity in organic solvents such as diethyl ether, hexane, and cyclohexane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Classification and nomenclature of enzymes by the reactions they catalyse. Enzyme Nomenclature1992. Available from http://www.chem.qmul.ac.uk/iubmb/enzyme/rules.html. Accessed 17 February, 2014

  2. Macrae, A. R. (1983). Journal of American Oil Chemistry Society, 60(2), 291–294.

    Article  CAS  Google Scholar 

  3. Pennisi, E. (1997). Science, 276, 705–706.

    Article  CAS  Google Scholar 

  4. Sellek, G. A., & Chaudhuri, J. B. (1999). Enzyme Microbiology Technology, 25, 471–482.

    Article  CAS  Google Scholar 

  5. Koops, B. C., Verheij, H. M., Slotboom, A. J., & Egmond, M. R. (1999). Enzyme Microbiology Technology, 25, 622–631.

    Article  CAS  Google Scholar 

  6. Helen, T., de Débora, O., Marcio, A. M., Marco, D. L., & Oliveira, J. V. (2010). Food Bioprocess Technology, 3(2), 182–196.

    Article  Google Scholar 

  7. Lima, C. J. B., Coelho, L. F., & Contiero, J. (2010). Food Technology and Biotechnology, 48, 175–181.

    Google Scholar 

  8. Kiruthika, P., Nisshanthini, S. D., Saraswathi, A., & Rajendiran, R. (2011). International Journal Advances Biotechnology Research, 2, 422–430.

    CAS  Google Scholar 

  9. Salihu, A., Bala, M., & Bala, S. M. (2013). ISRN Biotechnology, 2013, 1–5. doi:10.5402/2013/718352.

    Article  Google Scholar 

  10. Cheng, S. W., Wang, Y. F., & Liua, F. F. (2011). Chemistry Biochemistry Engineering, 25, 377–383.

    CAS  Google Scholar 

  11. Plackett, R. L., & Burman, J. P. (1946). Biometrika, 33(4), 305–325.

    Article  Google Scholar 

  12. Salihu, A., Alam, Z., Abdulkarim, M. I., & Salleh, M. (2011). African Journal of Biotechnology, 10, 18704–18708. doi:10.5897/AJB11.2741.

    CAS  Google Scholar 

  13. Rajendiran, R., Gayathri, S., Sureshkumar, B. T., & Priya, V. A. (2011). International Journal Agriculture Biology, 1, 60–63.

    Google Scholar 

  14. Lo, C.-F., Yu, C.-Y., Kuan, I.-C., & Lee, S.-L. (2012). International Journal of Molecular Sciences, 13, 14889–97. doi:10.3390/ijms131114889.

    Article  CAS  Google Scholar 

  15. Salihu, A., Alam, Z., Abdulkarim, M. I., & Salleh, M. (2011). Journal of Molecular Catalysis B: Enzymatic, 69(1), 66–73.

    Article  CAS  Google Scholar 

  16. Kaushik, R., Marwah, R. G., Gupta, P., et al. (2010). Indian Journal of Microbiology, 50, 456–62. doi:10.1007/s12088-011-0100-y.

    Article  CAS  Google Scholar 

  17. Talon, R., Dublet, N., Montel, M. C., et al. (1995). Current Microbiology, 30(1), 11–16.

    Article  CAS  Google Scholar 

  18. Kampen, M. D. V., Rosenstein, R., Gotz, F., et al. (2001). Biochimica et Biophysica Acta, 1544, 229–241.

    Article  Google Scholar 

  19. De Abreu, L., Lafuente, R. F., Rodrigues, R. C., et al. (2014). Journal of Molecular Catalysis B: Enzymatic, 99, 51–55.

    Article  Google Scholar 

  20. Ogino, H., Miyamoto, K., & Ishikawa, H. (1994). Applied and Environmental Microbiology, 60(10), 3884–3886.

    CAS  Google Scholar 

  21. Sirisha, E., Rajasekar, N., & Narasu, M. L. (2010). Advances Biology Research, 4, 249–252.

    CAS  Google Scholar 

  22. Stathopoulou, P. M., Savvides, A. L., Karagouni, A. D., & Hatzinikolaou, D. G. (2013). Biomedical Research International, 2013, 703130. doi:10.1155/2013/703130.

    Article  Google Scholar 

  23. Abdel-Fattah, Y. R., Soliman, N. A., Gaballa, A. A., Sabry, S. A., & El-Diwany, A. I. (2002). Acta Microbiologica Polonica, 51(4), 353–66.

    CAS  Google Scholar 

  24. Kishan, G., Gopalakannan, P., Muthukumaran, C., et al. (2013). Journal Genetics Engineering Biotechnology. doi:10.1016/j.jgeb.2013.06.001.

    Google Scholar 

  25. Parkin, KL. and Praphan, P. (2001) in Current Protocols in Food Analytical Chemistry: Lipase Assays John Wiley & Sons, Inc, pp. C3.1.1- C3.1.13

  26. Eltaweel, M. A., Noor, R., Raja, Z., et al. (2005). Annual Microbial, 55, 187–192.

    CAS  Google Scholar 

  27. Kanmani, P., Karthik, S., Aravind, J., & Kumaresan, K. (2013). ISRN Biotechnology. doi:10.5402/2013/528708.

    Google Scholar 

  28. Wehtje, E., & Adlercreutz, P. (1997). Biotechnology and Bioengineering, 55(5), 798–806.

    Article  CAS  Google Scholar 

  29. Masomiana, M., Rahman, R. N. Z. R. A., Sallehb, A. B., et al. (2013). Process Biochemistry, 48, 169–175.

    Article  Google Scholar 

  30. Rahman, R. N. Z. R. A., Baharum, S. N., Basri, M., et al. (2005). Analytical Biochemistry, 341, 267–274.

    Article  CAS  Google Scholar 

  31. Zhao, L. L., Xu, J. H., Zhao, J., et al. (2008). Process Biochemistry, 43, 626–633.

    Article  CAS  Google Scholar 

  32. Tamilarasan, K., & Dharmendira, K. M. (2012). Biocatal Agriculture Biotechnology, 1, 309–313.

    Article  Google Scholar 

  33. Dandavate, V., Jinjala, J., Keharia, H., et al. (2009). Bioresource Technology, 100, 3374–3381.

    Article  CAS  Google Scholar 

  34. Ebrahimpour, A., Rahman, R. N. Z. R. A., Basri, M., et al. (2011). Bioresource Technology, 102, 6972–6981.

    Article  CAS  Google Scholar 

  35. Mander, P., Cho, S. S., Simkhada, J. R., et al. (2012). Process Biochemistry, 47, 635–642.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Yogesh Shouche from the Microbial Culture Collection (MCC), National Center for Cell Science (NCCS), Pune, for facilitating the 16S rRNA gene sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krutika Desai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yele, V.U., Desai, K. A New Thermostable and Organic Solvent-Tolerant Lipase from Staphylococcus warneri; Optimization of Media and Production Conditions Using Statistical Methods. Appl Biochem Biotechnol 175, 855–869 (2015). https://doi.org/10.1007/s12010-014-1331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1331-2

Keywords

Navigation