Skip to main content
Log in

An Alpha-Glucosidase Inhibitor from an Endophytic Cladosporium sp. with Potential as a Biocontrol Agent

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study highlights the importance of alpha-glucosidase inhibitors as mechanisms for endophyte-mediated resistance to insect pests. One of the major benefits which endophytes confer on plants is providing resistance against insect pests. This built-in defense mechanism of the plant can be used for exploring ecofriendly strategies for pest control. In the present study, 34 endophytic fungi were isolated from Tinospora cordifolia and screened for their ability to produce alpha-glucosidase inhibitors. Maximum inhibitory activity was observed in an isolate from T. cordifolia (TN-9S), identified to be Cladosporium sp. The inhibitor was purified using chromatographic techniques. The insecticidal activity of the purified inhibitor was evaluated against Spodoptera litura. The inhibitor induced a significant mortality in the larvae of S. litura and adversely affected its survival and development. It also inhibited the activity of α-glycosidases in vivo in the gut of the larvae. The purified inhibitor was determined to be a phenolic compound with amine groups, demonstrating a noncompetitive type of inhibition in vitro. The production of the inhibitor was optimized. Response surface methodology (RSM) analysis revealed a significant interaction between dextrose and malt extract, with first-order effect of pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Maxmen, A. (2013). Nature, 501, 15–17.

    Article  Google Scholar 

  2. Strobel, G. A. (2003). Microbes and Infection, 5, 535–544.

    Article  CAS  Google Scholar 

  3. Tan, R. X., & Zou, W. X. (2001). Natural Product Reports, 18, 448–459.

    Article  CAS  Google Scholar 

  4. Azevedo, J. L., Jr., Maccheroni, W., Pereira, J. O., & Araujo, W. L. (2000). Electronic Journal of Biotechnology, 3, 15–16.

    Article  Google Scholar 

  5. Prestidge, R. A., & Gallagher, R. T. (1988). Ecological Entomology, 13, 429–435.

    Article  Google Scholar 

  6. Bacon, C.W., & Hills, N.S. (1996). Endophytic fungi in grasses and woody plants. In Reddin S.C., & Carris L.M. (eds.), St. Paul: American Phytopathologycal Society Press, pp. 155–178.

  7. Franco, O. L., Rigden, D. J., Melo, F. R., Bloch, C., Jr., Silva, C. P., & Grossi de SaÂ, M. F. (2000). European Journal of Biochemistry, 267, 1466–1473.

    Article  Google Scholar 

  8. Gatehouse, J. A. (2011). Current Protein and Peptide Science, 12(5), 409–416.

    Article  CAS  Google Scholar 

  9. Mehrabadi, M., Bandani, A. R., Mehrabadi, R., & Alizadeh, H. (2012). Pesticide Biochemistry and Physiology, 102, 220–228.

    Article  CAS  Google Scholar 

  10. Carlini, C. R., & Grossi-de-Sá, M. F. (2002). Toxicon, 40(11), 1515–1539.

    Article  CAS  Google Scholar 

  11. Nair, S. S., kavrekar, V., & Mishri, A. (2013). The European Journal of Experimental Biology, 3(1), 128–132.

    Google Scholar 

  12. Bischoff, H., Puls, W., Karause, H. P., Schutt, H., & Thomas, G. (1985). Diabetes Research and Clinical Practice, 1, 53–62.

    Google Scholar 

  13. Thakur, A., Kaur, S., Kaur, A., & Singh, V. (2012). Biocontrol Science and Technology, 22, 151–161.

    Article  Google Scholar 

  14. Rajalakshmi, M., Eliza, J., Priya, C. E., Nirmala, A., & Daisy, P. (2009). African Journal of Pharmacy and Pharmacology, 3(5), 171–180.

    Google Scholar 

  15. Singh, B., Thakur, A., Chadha, B. S., Kaur, S., & Kaur, A. (2012). Applied Biochemistry and Biotechnology, 168, 991–1002.

    Article  CAS  Google Scholar 

  16. Bachhawat, A., Shihabudeen, M. S., & Thirumurugan, K. (2011). International Journal of Pharmacy and Pharmaceutical Sciences, 3, 267–274.

    Google Scholar 

  17. Larone, D. H. (2002). Medically important fungi: a guide to identification (4th ed.). Washington: ASM.

    Google Scholar 

  18. Sharma, M., Chadha, B. S., Kaur, M., Ghatora, S. K., & Saini, H. S. (2008). Letters in Applied Microbiology, 46, 526–535.

    Article  CAS  Google Scholar 

  19. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular and Biological Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  20. Koul, O., Shankar, J. S., Mehta, N., Taneja, S. C., Tripathi, A. K., & Dhar, K. L. (1997). Journal of Applied Entomology, 121, 245–248.

    Article  Google Scholar 

  21. Bernfeld, P. (1955). Methods in enzymology vol. 1. In Colowick S.P., & Kaplan, N.O. (eds.), NY: Academic.

  22. Ferreira, C., & Terra, W. R. (1983). Biochemical Journal, 213(1), 43–51.

    CAS  Google Scholar 

  23. Waksmundzka-hanjos, M., Sherma, J., & Kowalska, T. (2008). Thin layer chromatography in phytochemistry. Boca Raton: CRC.

    Book  Google Scholar 

  24. Scmidt, D. D., Frommer, W., Mullar, L., Junge, B., Wingender, W., & Truscheit, E. (1977). Naturwissenschaften, 64, 535–536.

    Article  Google Scholar 

  25. Scmidt, D. D., Mullar, L., & Trucheit, E. (1979). Naturwissenschaften, 66, 584–585.

    Article  Google Scholar 

  26. Murao, S., & Miyata, S. (1980). Agricultural and Biological Chemistry, 44, 219–221.

    Article  CAS  Google Scholar 

  27. Ezure, Y., Murao, S., Miyazaki, K., & Kawamata, M. (1985). Agricultural and Biological Chemistry, 49, 1119–1125.

    Article  CAS  Google Scholar 

  28. Ingavat, N., Dobriener, J., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2009). Journal of Natural Products, 72, 2049–2052.

    Article  CAS  Google Scholar 

  29. Dewi, R. T., Iskandar, Y. M., Hanafi, M., Karnado, L. B. S., Angelina, M., Dewijanti, I. D., & Banjajarnmohar, S. D. S. (2007). Pakistan Journal of Biochemistry, 6, 465–471.

    Google Scholar 

  30. Mun’im, A., Ramdhan, M. G., & Soemiati, A. (2013). International Research Journal of Pharmacy, 4(5), 128–131.

    Article  Google Scholar 

  31. Ramdanis, R., Soemiati, A., & Mun’im, A. (2012). International Journal of Medicinal and Aromatic Plants, 2, 447–452.

    Google Scholar 

  32. Artanti, N., Tachibana, S., Kardani, L. B. S., & Sukiman, H. (2012). Pakistan Journal of Biological Sciences, 15(14), 673–679.

    Article  Google Scholar 

  33. Saito, N. (1982). Journal of Biological Chemistry, 257, 3120–3125.

    CAS  Google Scholar 

  34. Singh, H., Dixit, S., Verma, P. C., & Singh, P. K. (2014). Journal of Agricultural and Food Chemistry, 262(12), 2588–2594.

    Article  Google Scholar 

  35. Mayur, B., Sandesh, S., Shruti, S., & Sung, S. (2010). Journal of Medicinal Plants Research, 4(15), 1547–1553.

    Google Scholar 

  36. Kim, S. D., & Nho, H. J. (2004). Journal of Microbiology, 42(3), 223–227.

    CAS  Google Scholar 

  37. Matsui, T., Ebuchi, S., Fukui, K., Matsugano, K., Terahara, N., & Mtsumoto, K. (2004). Bioscience, Biotechnology, and Biochemistry, 68(11), 2239–2246.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Bahaderjeet Singh, acknowledges the grant of fellowship under UPE (University with Potential for Excellence) scheme of the University Grants Commission, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjeet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Kaur, T., Kaur, S. et al. An Alpha-Glucosidase Inhibitor from an Endophytic Cladosporium sp. with Potential as a Biocontrol Agent. Appl Biochem Biotechnol 175, 2020–2034 (2015). https://doi.org/10.1007/s12010-014-1325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1325-0

Keywords

Navigation