Skip to main content
Log in

Inactivation of Bacteria by Electric Current in the Presence of Carbon Nanotubes Embedded Within a Polymeric Membrane

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Uniform conductive composite membranes were prepared using a phase inversion method by blending carboxyl-functionalized multi-walled carbon nanotubes (CNTs) with a polysulfone polymer. At 6 % of the embedded CNTs, the membrane pore size measured by transmission electron microscopy (TEM) was approximately 50 nm. Electric current in the presence of the composite membranes markedly inactivated the model pathogenic bacteria Escherichia coli and Staphylococcus aureus, with the extent of bacterial inactivation rising when the current was increased. Over 99.999 % inactivation of both bacteria was observed in deionized water after 40 min at 5 mA direct current (DC); importantly, no appreciable inactivation occurred in the absence of either the electric field or the CNTs within the membranes under otherwise the same conditions. A much lower, although still pronounced, inactivation was seen with alternating current (AC) in a 25 mM NaCl aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452, 301–310.

    Article  CAS  Google Scholar 

  2. Liu, C., Xie, X., Zhao, W., Liu, N., Maraccini, P. A., Sassoubre, L. M., Boehm, A. B., & Cui, Y. (2013). Conducting nanosponge electroporation for affordable and high-efficiency disinfection of bacteria and viruses in water. Nano Letters, 13, 4288–4293.

    Article  CAS  Google Scholar 

  3. Serrano, M. C., Gutiérrez, M. C., & del Monte, F. (2014). Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Progress in Polymer Science, 39, 1448–1471.

    Article  CAS  Google Scholar 

  4. Gardea, F., & Lagoudas, D. C. (2014). Characterization of electrical and thermal properties of carbon nanotube/epoxy composites. Composites: Part B, 56, 611–620.

    Article  CAS  Google Scholar 

  5. de Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: Present and future. Communication Applied Science, 339, 535–539.

    Google Scholar 

  6. Ramasubramaniam, R., Chen, J., & Liu, H. Y. (2003). Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters, 83, 2928–2930.

    Article  CAS  Google Scholar 

  7. Cadek, M., Coleman, J. N., Barron, V., Hedicke, K., & Blau, W. J. (2002). Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Applied Physics Letters, 81, 5123–5125.

    Article  CAS  Google Scholar 

  8. Coleman, J. N., Cadek, M., Blake, R., Nicolosi, V., Ryan, K. P., Belton, C., Fonseca, A., Nagy, J. B., Gun’ko, Y. K., & Blau, W. J. (2004). High performance nanotube-reinforced plastics: Understanding the mechanism of strength increase. Advanced Functional Materials, 14, 791–798.

    Article  CAS  Google Scholar 

  9. Dalmas, F., Chazeau, L., Gauthier, C., Masenelli-Varlot, K., Dendievel, R., Cavaillé, J. Y., & Forró, L. (2005). Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties. Journal of Polymer Science Part B: Polymer Physics, 43, 1186–1197.

    Article  CAS  Google Scholar 

  10. Dufresne, A., Paillet, M., Putaux, J. L., Canet, R., Carmona, F., Delhaes, P., & Cui, S. (2002). Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. Journal of Materials Science, 37, 3915–3923.

    Article  CAS  Google Scholar 

  11. McCarthy, B., Coleman, J. N., Czerw, R., Dalton, A. B., Panhuis, M. I. H., Maiti, A., Drury, A., Bernier, P., Nagy, J. B., Lahr, B., Byrne, H. J., Carroll, D. L., & Blau, W. J. (2002). A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer. Journal of Physical Chemistry B, 106, 2210–2216.

    Article  CAS  Google Scholar 

  12. Chiu, F. C., & Kao, G. F. (2012). Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties. Composites: Part A, 43, 208–218.

    Article  Google Scholar 

  13. Maphutha, S., Moothi, K., Meyyappan, M., & Iyuke, S. E. (2013). A carbon nanotube-infused polysulfone membrane with poly(vinyl alcohol) layer for treating oil-containing waste water. Scientific Reports, 3, 1509–1514.

    Article  Google Scholar 

  14. Zhao, H., Qiu, S., Wu, L., Zhang, L., Chen, H., & Gao, C. (2014). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. Journal of Membrane Science, 450, 249–256.

    Article  CAS  Google Scholar 

  15. Sun, X., Wu, J., Chen, Z., Su, X., & Hinds, B. J. (2013). Fouling characteristics and electrochemical recovery of carbon nanotube membranes. Advanced Functional Materials, 23, 1500–1506.

    Article  CAS  Google Scholar 

  16. Shawky, H. A., Chae, S. R., Lin, S., & Wiesner, M. R. (2011). Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination, 272, 46–50.

    Article  CAS  Google Scholar 

  17. Kar, S., Subramanian, M., Pal, A., Ghosh, A. K., Bindal, R. C., Prabhakar, S., Nuwad, J., Pillai, C. G. S., Chattopadhyay, S., & Tewari, P. K. (2012). Preparation, characterization and performance evaluation of anti-biofouling property of carbon nanotube polysulfone nanocomposite membranes. Carbon Materials, 1538, 181–185.

    Google Scholar 

  18. Gethard, K., Sae-Khow, O., & Mitra, S. (2011). Water desalination using carbon-nanotube-enhanced membrane distillation. ACS Applied Materials & Interfaces, 3, 110–114.

    Article  CAS  Google Scholar 

  19. Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination. Journal of Physical Chemistry B, 112, 1427–1434.

    Article  CAS  Google Scholar 

  20. Shen, J., Yu, C., Ruan, H., Gao, C., & Van der Bruggen, B. (2013). Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multi-walled carbon nanotubes by interfacial polymerization. Journal of Membrane Science, 442, 18–26.

    Article  CAS  Google Scholar 

  21. Yin, J., Zhu, G., & Deng, B. (2013). Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. Journal of Membrane Science, 437, 237–248.

    Article  CAS  Google Scholar 

  22. Vecitis, C. D., Schnoor, M. H., Rahaman, S., Schiffman, J. D., & Elimelech, M. (2011). Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environmental Science and Technology, 45, 3672–3679.

    Article  CAS  Google Scholar 

  23. Rahaman, M. S., Vecitis, C. D., & Elimelech, M. (2012). Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environmental Science and Technology, 46, 1556–1564.

    Article  CAS  Google Scholar 

  24. de Lannoy, C. F., Jassby, D., Davis, D. D., & Wiesner, M. R. (2012). A highly electrically conductive polymer–multiwalled carbon nanotube nanocomposite membrane. Journal of Membrane Science, 415–416, 718–724.

    Article  Google Scholar 

  25. de Lannoy, C. F., Jassby, D., Gloe, K., Gordon, A. D., & Wiesner, M. R. (2013). Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes. Environmental Science and Technology, 47, 2760–2768.

    Article  Google Scholar 

  26. Zhang, Q., & Vecitis, C. D. (2014). Conductive CNT-PVDF membrane for capacitive organic fouling reduction. Journal of Membrane Science, 459, 143–156.

    Article  CAS  Google Scholar 

  27. Katathikankul, C., Techangamvong, S., Wimolmala, E., Niltui, P., Kanking, S., & Sombatsompop, N. (2013). Antibacterial ability of HPQM base Neusilin/natural rubber reinforced with carbon black. Advances in Materials Research, 747, 455–458.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported in part by the Infectious Diseases Research Center at MIT funded by the

Skolkovo Foundation and by the National Natural Science Foundation of China (21277173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Klibanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, A., Liu, H.K., Long, F. et al. Inactivation of Bacteria by Electric Current in the Presence of Carbon Nanotubes Embedded Within a Polymeric Membrane. Appl Biochem Biotechnol 175, 666–676 (2015). https://doi.org/10.1007/s12010-014-1318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1318-z

Keywords

Navigation