Skip to main content
Log in

Effect of an Organophosphate Pesticide, Monocrotophos, on Phosphate-Solubilizing Efficiency of Soil Fungal Isolates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Soil is a sink of pesticide residues as well as microorganisms. Fungi are well known for solubilization of inorganic phosphates, and this activity of fungal isolates may be affected by the presence of pesticide residues in the soil. In the present study, five generically different fungal isolates, viz. Aspergillus niger JQ660373, Aspergillus flavus, Penicillium aculeatum JQ660374, Fusarium pallidoroseum and Macrophomina sp., were tested and compared for their phosphate-solubilizing ability in the absence and presence of monocrotophos (500 mg L−1). After 168 h of incubation, four times high amount of tricalcium phosphate was solubilized by isolates in the growth medium containing monocrotophos in comparison to control (without monocrotophos). Concurrently, 78 % of the applied monocrotophos was degraded by these fungal isolates. Kinetics of phosphate solubilization shifted from logarithmic to power model in the presence of monocrotophos. Similarly, the phosphatase activity was also found significantly high in the presence of monocrotophos. The combined order of phosphate solubilization as well as monocrotophos degradation was found to be A. niger JQ660373 > P. aculeatum JQ660374 > A. flavus > F. pallidoroseum > Macrophomina sp. On the contrary, phosphate solubilization negatively correlated with the pH of the growth medium. Hence, it could be concluded that these fungal species efficiently solubilize inorganic phosphates and monocrotophos poses a positive effect on their ability and in turn degraded by them. To the best of our knowledge, this is the first report on P solubilization by Macrophomina sp. and F. pallidoroseum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pandey, S., & Singh, D. K. (2004). Chemistry, 55(2), 197–205.

    Article  CAS  Google Scholar 

  2. Bakalivanov, D. (1990). Pochvoznanie-i-Agrokhimiya, 25(5), 56–61.

    CAS  Google Scholar 

  3. Cernakova, M. (1993). Folia, 38(4), 331–334.

    Article  CAS  Google Scholar 

  4. Binner, R., Berendes, K. H., Felgentreu, D., Friesland, H., & Glitschka, M. (1999). Nachrichtenblatt-des-Deutschen-Pflanzenschutzdienstes, 51(9), 227–237.

    CAS  Google Scholar 

  5. Das, A. C., & Mukherjee, D. (1998). World Journal of Microbiology, 14(6), 903–906.

    Article  CAS  Google Scholar 

  6. Dordevic, S., Sestovic, M., Raicevic, V., & Dordevic, A. (1998). Pesticide, 13(4), 281–288.

    CAS  Google Scholar 

  7. Lee, P. W., Fukuto, J. M., Hernandez, H., & Stearns, S. M. (1990). Journal of Agricultural and Food Chemistry, 38, 567–573.

    Article  CAS  Google Scholar 

  8. Kucey, R. M. N. (1988). Canadian Journal of Soil Science, 68, 261–270.

    Article  CAS  Google Scholar 

  9. Goldstein, A. H., & Liu, S. T. (1987). Bioresource Technology, 5, 72–74.

    CAS  Google Scholar 

  10. Goldstein, A. H., Rogers, R. D., & Mead, G. (1993). Bioresource Technology, 11, 1250–1254.

    CAS  Google Scholar 

  11. Halder, A. K., Mishra, A. K., & Chakarbarthy, P. K. (1991). Indian Journal of Experimental Biology, 29, 28–31.

    CAS  Google Scholar 

  12. Abd-Alla, M. H. (1994). Letters in Applied Microbiology, 18, 294–296.

    Article  CAS  Google Scholar 

  13. Whitelaw, M. A. (2000). Advances in Agronomy, 69, 99–151.

    Article  CAS  Google Scholar 

  14. Minaxi, & Saxena, J. (2010). BioControl, 55(6), 799–810.

    Article  Google Scholar 

  15. Banik, S. (1983). Zentralblatt für Mikrobiologie, 138, 209–216.

    CAS  Google Scholar 

  16. Berthelin, F., Leyval, C., Laheurte, F., & De-Giudici, P. (1991). Special publication series of the British Ecological Society, No. 10. Oxford: Blackwell Scientific.

    Google Scholar 

  17. Rodriguez, H., & Fraga, R. (1999). Biotechnol Adv, 17, 319–339.

    Article  CAS  Google Scholar 

  18. Barroso, C. V., Pereira, G. T., & Nahas, E. (2006). Brazilian Journal of Microbiology, 37, 434–438.

    Article  CAS  Google Scholar 

  19. Son, H. J., Park, G. T., Cha, M. S., & Heo, M. S. (2006). Bioresource Technology, 97, 204–210.

    Article  CAS  Google Scholar 

  20. Rangaswamy, V., & Venkateswarlu, K. (1992). Bulletin of Environmental Contamination and Toxicology, 49(6), 797–804.

    Article  CAS  Google Scholar 

  21. Edi-Premono, M., Moawad, A. M., & Vlek, P. L. G. (1996). Indonesian Journal of Agricultural Science, 11, 13–23.

    Google Scholar 

  22. Murphy, J., & Riley, J. P. (1962). Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  23. Tham, S.-J., Chang, C.-D., Huang, H. J., & Lee, Y.-F. (2010). Bioscience, Biotechnology, and Biochemistry, 74(4), 727–735.

    Article  CAS  Google Scholar 

  24. Panhwar, Q. A., Radziah, O., Sariah, M., & Ismail, M. R. (2009). International Journal of Agriculture and Biology, 6, 667–673.

    Google Scholar 

  25. Janghel, E. K., Rai, J. K., Rai, M. K., & Gupta, V. K. (2006). Journal of the Chinese Chemical Society, 53, 343–347.

    CAS  Google Scholar 

  26. Doyle, J. J., & Doyle, J. L. (1987). Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  27. Gomashe, V. A., Sabina, S. S., & Dharmik, G. P. (2012). International Journal of Science Innovations and Discovery, 2(2), 310–315.

    Google Scholar 

  28. Pradhan, N., & Sukla, L. B. (2005). African Journal of Biotechnology, 5(10), 850–854.

    Google Scholar 

  29. Sanjotha, P., Mahantesh, P., & Patil, C. S. (2011). International Journal of Microbiology Research, 3(1), 56–58.

    Article  Google Scholar 

  30. Bhadbhade, B. J., Sarnaik, S. S., & Kanekar, P. P. (2002). Journal of Applied Microbiology, 93, 224–234.

    Article  CAS  Google Scholar 

  31. Bhalerao, S. T., & Puranik, R. P. (2009). International Biodeterioration and Biodegradation, 63, 503–508.

    Article  CAS  Google Scholar 

  32. Cunningham, J. E., & Kuiack, C. (1992). Applied and Environmental Microbiology, 58(5), 1451–1458.

    CAS  Google Scholar 

  33. Dutton, V. M., & Evans, C. S. (1996). Canadian Journal of Microbiology, 42(9), 881–895.

    Article  CAS  Google Scholar 

  34. Nahas, E. (1996). World Journal of Microbiology and Biotechnology, 12(6), 567–572.

    Article  CAS  Google Scholar 

  35. Jones, D. L. (1998). Plant and Soil, 205(1), 25–44.

    Article  CAS  Google Scholar 

  36. Richardson, A. E., Hadobas, P. A., & Hayes, J. E. (2000). Plant, Cell and Environment, 23(4), 397–405.

    Article  CAS  Google Scholar 

  37. Tarafdar, J. C., Bareja, M., & Panwar, J. (2003). Indian Journal of Microbiology, 43(1), 27–32.

    Google Scholar 

  38. Aseri, G. K., Jain, N., & Tarafdar, J. C. (2009). American-Eurasian Journal of Agricultural and Environmental Sciences, 5(4), 564–570.

    CAS  Google Scholar 

  39. Goldstein, A. H. (1986). American Journal of Alternative Agriculture, 1, 51–57.

    Google Scholar 

  40. Rodriguez, H., Gonzalez, T., Selman, G. (2000) Journal of Biotechnology, 84: 155–161.

  41. George, T., Gregory, P., Wood, M., Read, D., & Buresh, R. (2002). Soil Biology and Biochemistry, 34, 1487–1494.

    Article  CAS  Google Scholar 

  42. Nenwani, V., Doshi, P., Saha, T., & Rajkumar, S. (2010). Journal of Yeast and Fungal Research, 1(1), 009–014.

    CAS  Google Scholar 

  43. Ohtake, H., Kato, J., Kuroda, A., Taguchi, K., & Sakai, Y. (1996). In T. Nakazawa, K. Furukawa, D. Haas, & S. Silver (Eds.), Molecular biology and biotechnology (pp. 188–194). Washington DC: American Society for Microbiology.

    Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Prof. Aditya Shastri, Vice Chancellor, Banasthali University for the financial support through the Department of Bioscience and Biotechnology, Banasthali University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Garg, V. & Saxena, J. Effect of an Organophosphate Pesticide, Monocrotophos, on Phosphate-Solubilizing Efficiency of Soil Fungal Isolates. Appl Biochem Biotechnol 175, 813–824 (2015). https://doi.org/10.1007/s12010-014-1309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1309-0

Keywords

Navigation