Skip to main content
Log in

Effect of Pretreatments and Endo-1,4-β-Xylanase Hydrolysis of Canola Meal and Mustard Branfor Production of Oligosaccharides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alkali/acid-pretreated canola meal and mustard bran were subjected to endo-1,4-β-xylanase (T. longibrachiatum) hydrolysis for oligosaccharide production. Pretreatments significantly (α = 0.05) increased the relative content of pentose sugars, especially in alkali-pretreated canola meal (∼44 %) and mustard bran (∼72 %). The amounts of pentosan (g/100 g) in acid- and alkali-pretreated canola meal were 7.50 and 8.21 and in corresponding mustard bran were 8.67 and 10.39, respectively. These pretreated substrates produced a pentose content (g/100 g) of 2.10 ± 0.14 (18 h) and 2.95 ± 0.10 (24 h), respectively, during hydrolysis. As per UPLC-MS data, the main oligosaccharides in the hydrolyzates of alkali-pretreated substrates are xylo-glucuronic acid and xylobiose. The release of total phenolics of the hydrolyzates increased until 18 h irrespective of the type of substrate or pretreatment. Hydrolyzates of acid-pretreated substrates indicated more total antioxidant activity than alkali-pretreated substrates, attributed to its high phenolic content. The study suggests the potential of canola meal and mustard bran for the production of oligosaccharides, wherein the use of various combinations of cell-wall-degrading enzymes and its optimization may result in a better yield, with simultaneous production of endogenous phenolics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Canada’s Farm Income Forecast for 2011–2012. www.agr.gc.ca. Accessed 4 Feb 2014.

  2. Animal Feed Resources Information System (2002). www.fao.org. Accessed 21 Dec 2013.

  3. Zui, F., Kaneko, S., Kuno, A., Kobayashi, H., Kusakabe, I., & Mizuno, H. (2004). Journal of Biological Chemistry, 279(10), 9606–9614.

    Article  Google Scholar 

  4. Ishihara, M., Nojiri, M., Hayashi, N., Nishimura, T., & Shimizu, K. (1997). Enzyme and Microbial Technology, 21, 170–175.

    Article  CAS  Google Scholar 

  5. Okazaki, M., Fujikawa, S., & Mastumoto, N. (1990). Bifidobacteria and Microflora, 9, 77–86.

    Article  Google Scholar 

  6. Nabarlatz, D., Farriol, X., & Montane, D. (2005). Industrial and Engineering Chemistry Research, 44, 7746–7755.

    Article  CAS  Google Scholar 

  7. Moure, A., Gullon, P., Dominiguez, H., & Parajo, J. C. (2006). Process Biochemistry, 41(9), 1913–1923.

    Article  CAS  Google Scholar 

  8. Loo, J. V., Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M., Kok, N., Macfarlane, G., Newton, D., Quigley, M., Roberfroid, M., van Vliet, T., & van den Heuvel, E. (1999). British Journal of Nutrition, 81, 121–132.

    Google Scholar 

  9. Toshio, I., Noriyoshi, I., Toshiaki, K., Toshiyuki, N. and Kunimasa, K. (1990). Japan Patent JP, 2119790.

  10. Vazquez, M. J., Alonso, J. L., Domınguez, H., & Parajo, J. C. (2000). Trends in Food Science & Technology, 11, 387–393.

    Article  CAS  Google Scholar 

  11. Aachary, A. A., & Prapulla, S. G. (2009). Bioresource Technology, 100(2), 991–995.

    Article  CAS  Google Scholar 

  12. Naczk, M., Amarowicz, R., Sullivan, A., & Shahidi, F. (1998). Food Chemistry, 62(4), 489–502.

    Article  CAS  Google Scholar 

  13. Ai, Z., Jiang, Z., Li, L., Deng, W., Kusakabe, I., & Li, H. (2005). Process Biochemistry, 40, 2707–2714.

    Article  CAS  Google Scholar 

  14. Yang, R., Xu, S., Wang, Z., & Yang, W. (2005). LWT-Food Science and Technology, 38, 677–682.

    Article  CAS  Google Scholar 

  15. Jiang, Z., Yang, S., Yang, Q., Li, L., & Tan, S. (2005). World Journal of Microbiology and Biotechnology, 21(6–7), 863–867.

    Article  CAS  Google Scholar 

  16. Pramod, S. N., & Venkatesh, Y. P. (2006). Glycoconjugate Journal, 23(7–8), 481–488.

    Article  CAS  Google Scholar 

  17. Wood, P. J., Weisz, J., & Blackwell, B. A. (1994). Cereal Chemistry, 71(3), 301–307.

    CAS  Google Scholar 

  18. Folin, O., & Ciocalteu, V. (1927). Journal of Biological Chemistry, 73, 627–650.

    CAS  Google Scholar 

  19. Reis, A., Pinto, P., Evtuguin, D. V., Neto, C. P., Domingues, P., Ferrer-Correia, A. J., & Domingues, M. R. M. (2005). Rapid Communications in Mass Spectrometry, 19, 3589–3599.

    Article  CAS  Google Scholar 

  20. Khattab, R., Eskin, M., Aliani, M., & Thiyam, U. (2010). Journal of the American Oil Chemists Society, 87(2), 147–155.

    Article  CAS  Google Scholar 

  21. Karakaya, S., & Simsek, S. (2011). Journal of the American Oil Chemists Society, 88, 1361–1366.

    Article  CAS  Google Scholar 

  22. Parajo, J. C., Alonso, J. L., & Santos, V. (1995). Bioresource Technology, 51, 153–162.

    Article  CAS  Google Scholar 

  23. Saska, M., & Ozer, E. (1995). Biotechnology and Bioengineering, 45, 517–523.

    Article  CAS  Google Scholar 

  24. Jeong, K. J., Park, I. Y., Kim, M. S., & Kim, S. C. (1998). Applied Microbiology and Biotechnology, 50, 113–118.

    Article  CAS  Google Scholar 

  25. Reddy, S. S., & Krishnan, C. (2013). Food Biotechnology, 27(4), 357–370.

    Article  CAS  Google Scholar 

  26. Selvendran, R. R. (1985). Journal of Cell Science - Supplement, 2, 51–88.

    Article  CAS  Google Scholar 

  27. Havlicek, J. E., & Samuelson, O. (1972). Carbohydrate Research, 22, 307–316.

    Article  CAS  Google Scholar 

  28. Jacobs, A., Larsson, P. T., & Dahlman, O. (2001). Biomacromolecules, 2(3), 979–990.

    Article  CAS  Google Scholar 

  29. Veenashri, B. R., & Muralikrishna, G. (2011). Food Chemistry, 126(3), 1475–1481.

    Article  CAS  Google Scholar 

  30. Akpinar, O., Gunny, K., Yilmaz, Y., Levent, O., & Bostanci, S. (2010). BioResource, 5, 699–711.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Agri-Food Research and Development Initiative (ARDI)-Growing Forward 1 Program and supported by the Bunge Canada, Canola Council of Canada and GS Dunn Ltd. The authors would like to thank Dr. Steve Cui and his technician Ms. Cathy Wang from the Guelph Food Research Centre, Agriculture and Agri-Food Canada for carrying out the neutral sugar analysis. The authors also would like to thank Hai Feng, Department of Human Nutritional Sciences, University of Manitoba (Winnipeg, MA, Canada) for technical assistance with UPLC-MS.

Conflict of Interest

There is no conflict of interest between the authors to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Thiyam-Hollander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Scanlon, M.G., Eskin, N.A.M. et al. Effect of Pretreatments and Endo-1,4-β-Xylanase Hydrolysis of Canola Meal and Mustard Branfor Production of Oligosaccharides. Appl Biochem Biotechnol 175, 194–208 (2015). https://doi.org/10.1007/s12010-014-1253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1253-z

Keywords

Navigation