Skip to main content
Log in

Characteristics of Oxidation-Reduction Potential, VFAs, SCOD, N, and P in an ATAD System Under Different Thermophilic Temperatures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

One-stage autoheated thermophilic aerobic digestion (ATAD) can stabilize sludge to meet class A standard. In this study, batch experiments were conducted to investigate the characteristics of oxidation-reduction potential (ORP), volatile fatty acids (VFAs), soluble chemical oxygen demand (SCOD), and nutrients at different temperatures (45, 55, and 65 °C) in the one-stage ATAD. Results showed that the ORP values remained between approximately −350 and −120 mV in the primary 5-day digestion despite of excessive aeration in the digester, indicating that the aeration level could be decreased in an ATAD system to save energy. The pH exhibited a poor correlation (R 2 < 0.11) with ORP, indicating that some variables synthetically effected on pH. Digestion at 65 °C caused more intercellular compounds released because of the highest concentrations of SCOD, VFA, nitrogen (N) and phosphorus (P) in the solution among three digestion temperatures. The volatile suspended solid (VSS) removal rate for sludge at 55 °C was the highest among three digestion temperatures, reaching 41.4 % on day 13 and meeting Class A standard. VSS removal rate of 30.1 % under 65 °C did not satisfy the effluent standard because of the high soluble content of ammonium nitrogen. The majority of nitrogen and phosphorus left in the sludge supernatant under 65 °C could hinder its further use for land applications. Therefore, the optimal temperature of 55 °C is suitable for the ATAD process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kelly, H. G., Mavinic, D. S. (2003) Autothermal thermophilic aerobic digestion research application and operational experience, In: WEFTEC 2003 Workshop W104 Thermophilic, Digestion, Los Angeles.

  2. USEPA, C.F.R. 40, P.A.R.T. 503. (1993). Standards for the use or disposal of sewage sludge. Washington: United States Environmental Protection Agency.

    Google Scholar 

  3. Kelly, H. G., Warren, R. (1997) Autothermal thermophilic aerobic digestion design. CSCE/ASCE Environmental Engineering Conference, Edmonton, AB, 22–26, 217–225.

  4. Layden, M. N., Mavinic, D. C., Kelly, H. G., & Moles, R. (2007). Journal of Environmental Engineering and Science, 6, 665–678.

    Article  CAS  Google Scholar 

  5. Zhu, N. W., Lin, J. M., Cheng, H., Zhang, S. F., Jia, J. P. (2005). China Patent CN1587110.

  6. Cheng, J. H. (2006). PhD thesis, Tongji University, Shanghai, China.

  7. Cheng, J. H., Zhang, Y. Y., Zhu, N. W., Liu, S. G. (2011). Advanced Materials Research, (236–238), 437–440

  8. Liu, S. G., Zhu, N. W., & Li, L. Y. (2011). Chemical Engineering Journal, 174, 564–570.

    Article  CAS  Google Scholar 

  9. Cheng, J. H., Ji, Y. H., Kong, F., & Chen, X. (2013). Applied Biochemistry and Biotechnology, 171, 1701–1714.

    Article  CAS  Google Scholar 

  10. USEPA. (1990). Autothermal thermophilic aerobic digestion of municipal wastewater sludge report EPA/625/10-90/007. Washington: Environmental Protection Agency.

    Google Scholar 

  11. Kelly, H. G., Melcer, H., & Mavinic, D. S. (1993). Water Environment Research, 65, 849–861.

    Article  CAS  Google Scholar 

  12. Layden, N. M., Kelly, H. G., Mavinic, D. S., Moles, R., & Bartlett, J. (2007). Journal of Environmental Engineering and Science, 6, 679–690.

    Article  CAS  Google Scholar 

  13. Rehm, H. J., & Reed, G. (1999). Biotechnology (2nd ed.). Germany: Wiley-VCH.

    Book  Google Scholar 

  14. Juteau, P., Tremblay, D., Ould-Moulaye, C. B., Bisaillon, J. G., & Beaudet, R. (2006). Livestock Science, 102, 187–196.

    Article  Google Scholar 

  15. Layden, M. N. (2007). Journal of Environmental Engineering and Science, 6, 19–29.

    Article  CAS  Google Scholar 

  16. WEF. (1995) Manual of Practice FD no 9: wastewater residuals stabilization. Water Environment Federation, Task Force on Wastewater Residuals Stabilization, Virginia, USA.

  17. Ugwuanyi, J. O., Harvey, L. M., & McNeil, B. (2005). Bioresource Technology, 96, 721–730.

    Article  Google Scholar 

  18. Kim, H., & Hao, O. J. (2001). Water Environment Research, 73, 95–102.

    Article  CAS  Google Scholar 

  19. Chang, C. N., Ma, Y. S., & Lo, C. W. (2002). Chemical Engineering Journal, 90, 273–281.

    Article  CAS  Google Scholar 

  20. Kishida, N., Kim, J. H., Chen, M., Sasaki, H., & Sudo, R. (2003). Journal of Bioscience and Bioengineering, 96, 285–290.

    Article  CAS  Google Scholar 

  21. Ruanoa, M. V., Ribes, J., Seco, A., & Ferrer, J. (2012). Chemical Engineering Journal, 183, 212–221.

    Article  Google Scholar 

  22. Staton, K. L., Alleman, J. E., Pressley, R. L., Eloff, J. (2001) 2nd generation autothermal thermophilic aerobic digestion: conceptual issues and process advancements, In: WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, San Diego.

  23. Cheng, J. H., Zhou, Q. F., & Zhu, N. W. (2009). Research Environmental Science (in China), 22, 484–489.

    CAS  Google Scholar 

  24. APHA, AWWA, WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  25. Fothergill, S., & Mavinic, D. S. (2000). Journal of Environmental Engineering, 2000, 389–396.

    Article  Google Scholar 

  26. Zhang, Z. J., & Zhu, J. (2006). Bioresource Technology, 97, 140–149.

    Article  CAS  Google Scholar 

  27. Van Loosdrecht, M. C. M., & Henze, M. (1999). Water Science and Technology, 39, 107–117.

    Article  Google Scholar 

  28. Liu, S. G., Song, F. Y., Zhu, N. W., Yuan, H. P., & Cheng, J. H. (2010). Bioresource Technology, 101, 9438–9444.

    Article  CAS  Google Scholar 

  29. Ye, F. X., Ji, H. Z., & Ye, Y. F. (2012). Journal of Hazardous Materials, 219–220, 164–168.

    Article  Google Scholar 

  30. Chu, A., Mavinic, D. S., & Kelly, H. G. (1996). Water Research, 30, 1759–1770.

    Article  CAS  Google Scholar 

  31. Mavinic, D. S., Mahendraker, V., Sharma, A., & Kelly, H. G. (2001). Journal of Environmental Engineering, 127, 311–316.

    Article  CAS  Google Scholar 

  32. Wang, C. T., Yang, C. M. J., & Chen, Z. S. (2012). Biomass and Bioenergy, 37, 318–329.

    Article  CAS  Google Scholar 

  33. Zhu, J. (2000). Agriculture, Ecosystems & Environment, 78, 93–106.

    Article  Google Scholar 

  34. Zhu, J., Ndegwa, P. M., & Luo, A. (2002). Journal of Environmental Science and Health, Part B, 37, 265–275.

    Article  Google Scholar 

  35. Li, X. S., Ma, H. Z., Wang, Q. H., Matsumoto, S., Maeda, T., & Ogawa, H. I. (2009). Bioresource Technology, 100, 2475–2481.

    Article  CAS  Google Scholar 

  36. Juteau, P., Tremblay, D., Ould-Moulaye, C. B., Bisaillon, J. G., & Beaudet, R. (2004). Water Research, 38, 539–546.

    Article  CAS  Google Scholar 

  37. Xue, T., & Huang, X. (2007). Journal of Environmental Sciences, 19, 1153–1158.

    Article  CAS  Google Scholar 

  38. Boulanger, M. L. (1995). PhD thesis, University of British Columbia, Vancouver, Canada.

  39. Pastor, L., Marti, N., Bouzas, A., & Seco, A. (2008). Bioresource Technology, 99, 4817–4824.

    Article  CAS  Google Scholar 

  40. Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Chemical Engineering Journal, 141, 67–74.

    Article  CAS  Google Scholar 

  41. Bolzonella, D., Cavinato, C., Fatone, F., Pavan, P., & Cecchi, F. (2012). Waste Management, 32, 1196–1201.

    Article  CAS  Google Scholar 

  42. SEPAC, GB18918-2002. (2002). Discharge standards for pollutants from municipal wastewater treatment plants. Beijing: China Environmental Science Press.

    Google Scholar 

  43. Ozturk, I., Altinbas, M., Koyuncu, I., Arikan, O., & Yangin, C. G. (2003). Waste Management, 23, 441–446.

    Article  CAS  Google Scholar 

  44. Xu, C. W., Yuan, H. P., Lou, Z. Y., Zhang, G. F., Gong, J. Z., & Zhu, N. W. (2013). Bioresource Technology, 149, 225–231.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Third Batch Jiangsu Province Overseas Research and Training Program for the University Prominent Young and Middle-aged Teachers and Presidents, Jiangsu Province Environmental Protection Science and Research Project (2013029), Jiangsu Province Taihu Water Pollution Treatment Special Fund (no. 7th) Project (JSZC-G2013-177), and the Section of Jiangsu Province “333 Hi-Class Personnel Training Program” (no. BRA2011185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiehong Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Kong, F., Zhu, J. et al. Characteristics of Oxidation-Reduction Potential, VFAs, SCOD, N, and P in an ATAD System Under Different Thermophilic Temperatures. Appl Biochem Biotechnol 175, 166–181 (2015). https://doi.org/10.1007/s12010-014-1241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1241-3

Keywords

Navigation