Skip to main content

Advertisement

Log in

Cellulolytic Enzymes Production by Utilizing Agricultural Wastes Under Solid State Fermentation and its Application for Biohydrogen Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bokinsky, G., Peralta-Yahya, P. P., George, A., Holmes, B. M., Steen, E. J., Dietrich, J., Lee, T. S., Tullman-Ercek, D., Voigt, C. A., Simmons, B. A., & Keasling, J. D. (2011). Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proceedings of the National Academy of Sciences, 108, 19949–19954.

    Article  CAS  Google Scholar 

  2. Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2014). Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Applied Biochemistry and Biotechnology, 172, 3776–3797.

    Article  CAS  Google Scholar 

  3. Saratale, G. D., Saratale, R. G., & Chang, J. S. (2013). Biohydrogen from renewable resources. Pandey, A., Chang, J. S., Hallenbeck P., Larroche C. (Eds.) Biohydrogen, Elsevier, 185–221.

  4. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology, 91, 153–156.

    Article  CAS  Google Scholar 

  5. Lo, Y. C., Saratale, G. D., Chen, W. M., Bai, M. D., & Chang, J. S. (2009). Isolation of cellulose-utilizing bacteria for cellulosic biohydrogen production. Enzyme and Microbial Technology, 44, 417–425.

    Article  CAS  Google Scholar 

  6. Saratale, G. D., Saratale, R. G., Lo, Y. C., & Chang, J. S. (2010). Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and their applications for cellulosic biohydrogen production. Biotechnology Progress, 26, 406–416.

    CAS  Google Scholar 

  7. Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology, 102, 6065–6072.

    Article  CAS  Google Scholar 

  8. Kalogeris, E., Iniotaki, F., Topakas, E., Christakopoulos, P., Kekos, D., & Macris, B. J. (2003). Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresource Technology, 86, 207–213.

    Article  CAS  Google Scholar 

  9. Krishna, C. (2005). Solid-state fermentation systems -an overview. Critical Reviews in Biotechnology, 25, 1–30.

    Article  CAS  Google Scholar 

  10. Xin, F., & Geng, A. (2009). Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Applied Biochemistry and Biotechnology, 162, 295–306.

    Article  Google Scholar 

  11. Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146–161.

    Article  CAS  Google Scholar 

  12. Saratale, G. D., Chen, S. D., Lo, Y. C., Saratale, R. G., & Chang, J. S. (2008). Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation – a review. Journal of Scientific and Industrial Research, 67, 962–979.

    CAS  Google Scholar 

  13. Cao, G. L., Ren, N. Q., Wang, A. J., Lee, D. J., Guo, W. Q., & Liu, B. F. (2009). Acid hydrolysis of corn stover for biohydrogen production using thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy, 34, 7182–7188.

    Article  CAS  Google Scholar 

  14. Panagiotopoulos, I. A., Bakker, R. R., de Vrije, T., Koukios, E. G., & Claassen, P. A. M. (2010). Pretreatment of sweet sorghum bagasse for hydrogen production by caldicellulosiruptor saccharolyticus. International Journal of Hydrogen Energy, 35, 7738–7747.

    Article  CAS  Google Scholar 

  15. Saratale, G. D., & Oh, S. E. (2012). Lignocellulosics to ethanol: the future of the chemical and energy industry. African Journal of Biotechnology, 11, 1002–1013.

    CAS  Google Scholar 

  16. Saratale, G. D., Saratale, R. G., & Oh, S. E. (2012). Production and characterization of multiple cellulolytic enzymes by isolated streptomyces sp. MDS. Biomass and Bioenergy, 47, 302–315.

    Article  CAS  Google Scholar 

  17. Kalyani, D., Lee, K. M., Kim, T. S., Li, J., Dhiman, S. S., Kang, Y. C., & Lee, J. K. (2013). Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel, 107, 815–822.

    Article  CAS  Google Scholar 

  18. Goering, H. D., & Van Soest, J. P. (1970). Forage for fiber analysis. In USDA Agricultural Handbook No.379, 1–20.

  19. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Saritha, M., Arora, A., & Nain, L. (2012). Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresource Technology, 104, 459–465.

    Article  CAS  Google Scholar 

  21. Kachlishvili, E., Penninckx, M. J., Tsiklauri, N., & Elisashvili, V. (2006). Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World Journal of Microbiology and Biotechnology, 22, 391–397.

    Article  CAS  Google Scholar 

  22. Muniswaran, P. K. A., & Charyulu, N. C. L. N. (1994). Solid substrate fermentation of coconut coir pith for cellulase production. Enzyme and Microbial Technology, 16, 436–440.

    Article  CAS  Google Scholar 

  23. Pandey, A., Ashakumary, L., Selvakumar, P., & Vijayalakshmi, K. S. (1994). Influence of water activity on growth and activity of aspergillus niger for glycoamylase production in solid-state fermentation. World Journal of Microbiology and Biotechnology, 10, 485–486.

    Article  CAS  Google Scholar 

  24. Ramachandran, S., Patel, A. K., Nampoothiri, K. M., Francis, F., Nagy, V., Szakacs, G., & Pandey, A. (2004). Coconut oil cake––a potential raw material for the production of α-amylase. Bioresource Technology, 93, 169–174.

    Article  CAS  Google Scholar 

  25. Qin, Y., He, H., Li, N., Ling, M., & Liang, Z. (2010). Isolation and characterization of a thermostable cellulaseproducing Fusarium chlamydosporum. World Journal of Microbiology and Biotechnology, 26, 1991–1997.

    Article  CAS  Google Scholar 

  26. Dhillon, G. S., Oberoi, H. S., Kaur, S., Bansal, S., & Brar, S. K. (2011). Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Industrial Crops and Products, 34, 1160–1167.

    Article  CAS  Google Scholar 

  27. Ang, S. K., Shaza, E. M., Adibah, Y., Surain, A. A., & Madihah, M. S. (2013). Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochemistry, 48, 1293–1302.

    Article  CAS  Google Scholar 

  28. Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 32, 1341–1346.

    Article  CAS  Google Scholar 

  29. Ng, I. S., Li, C. W., Chan, S. P., Chir, J. L., Chen, P. T., Tong, C. G., Yu, S. M., & Ho, T. H. D. (2010). High-level production of a thermoacidophilic b-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource Technology, 101, 1310–1317.

    Article  CAS  Google Scholar 

  30. Shamala, T. R., & Sreekantiah, K. R. (1986). Production of cellulases and D-xylanase by some selected fungal isolates. Enzyme and Microbial Technology, 8, 178–182.

    Article  CAS  Google Scholar 

  31. Dogaris, I., Vakontios, G., Kalogeris, E., Mamma, D., & Kekos, D. (2009). Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Industrial Crops and Products, 29, 404–411.

    Article  CAS  Google Scholar 

  32. Fernando, D. A. F., Vici, A. C., Reis, V. R. A., Jorge, J. A., Terenzi, H. F., Reis, R. A., & Polizeli, M. L. T. (2011). Production of fibrolytic enzymes by aspergillus japonicas C03 using agro-industrial residues with potential application as additives in animal feed. Bioprocess and Biosystems Engineering, 34, 347–355.

    Article  Google Scholar 

  33. Lee, J. W., Kim, H. Y., Koo, B. W., Choi, D. H., Kwon, M., & Choi, I. G. (2008). Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. Journal of Bioscience and Bioengineering, 106, 162–167.

    Article  CAS  Google Scholar 

  34. Kovács, K., Szakács, G., & Zacchi, G. (2009). Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pretreated spruce using crude Trichoderma reesei and Trichoderma atroviride enzymes. Process Biochemistry, 44, 1323–1329.

    Article  Google Scholar 

  35. Jeya, M., Nguyen, N. P. T., Moon, H. J., Kim, S. H., & Lee, J. K. (2010). Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis. Bioresource Technology, 101, 8742–8749.

    Article  CAS  Google Scholar 

  36. Sharma, S. K., Kalra, K. L., & Kocher, G. S. (2004). Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale-up. Biomass and Bioenergy, 27, 399–402.

    Article  CAS  Google Scholar 

  37. Cara, C. A., Ruiz, E., Ballesteros, I., Negro, M. J., & Castro, E. (2006). Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry, 41, 423–429.

    Article  CAS  Google Scholar 

  38. Yamashita, Y., Shono, M., Sasaki, C., & Nakamura, Y. (2010). Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydrate Polymers, 79, 914–920.

    Article  CAS  Google Scholar 

  39. Saha, B. C., & Cotta, M. A. (2008). Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass and Bioenergy, 32, 971–977.

    Article  CAS  Google Scholar 

  40. Ferreira, S., Duarte, A. P., Ribeiro, M. H. L., Queiroz, J. A., & Domingues, F. C. (2009). Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal, 45, 192–200.

    Article  CAS  Google Scholar 

  41. Pattra, S., Sangyoka, S., Boonmee, M., & Reungsang, A. (2008). Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy, 33, 5256–5265.

    Article  CAS  Google Scholar 

  42. Nguyen, T. A. D., Han, S. J., Kim, J. P., Kim, M. S., & Sim, S. J. (2010). Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresource Technology, 101, S38–S41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the New & Renewable Energy program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (no. 20133030000300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyu Oh.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saratale, G.D., Kshirsagar, S.D., Sampange, V.T. et al. Cellulolytic Enzymes Production by Utilizing Agricultural Wastes Under Solid State Fermentation and its Application for Biohydrogen Production. Appl Biochem Biotechnol 174, 2801–2817 (2014). https://doi.org/10.1007/s12010-014-1227-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1227-1

Keywords

Navigation