Skip to main content

Advertisement

Log in

Production and Evaluation of Antimycotic and Antihepatitis C Virus Potential of Fusant MERV6270 Derived from Mangrove Endophytic Fungi Using Novel Substrates of Agroindustrial Wastes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Among forty endophytic fungal isolates derived from the mangrove plant Avicennia marina, thirty-seven isolates (92.5 %) shown vary antimycotic activity against clinical Trichophyton, Microsporum, and Epidermophyton isolates. The hyperactive wild antagonistic strains Acremonium sp. MERV1 and Chaetomium sp. MERV7 were subjected to intergeneric protoplast fusion technique, and out of 20 fusants obtained, the fusant MERV6270 showed the highest antimycotic activity with the broadest spectrum against all dermatophytes under study. Solid-state fermentation (SSF) showed its superiority for antimycotic/antiviral metabolite production using cost-effective agroindustrial residues. Low-cost novel fermentation medium containing inexpensive substrate mixture of molokhia stalk, lemon peel, pomegranate peel, peanut peel (2:1:1:1) moistened with potato, and meat processing wastewaters (2:1, at moisture content of 60 %) provided a high antimycotic metabolite yield, 33.25 mg/gds, by the fusant MERV6270. The optimal parameters for antimycotic productivity under SSF were incubation period (4 days), incubation temperature (27.5–30 °C), initial pH (6), initial moisture level (60 %), substrate particle size (1.0 mm), and inoculum size (2 × 106 spores/gds), which elucidated antimycotic activity to 44.19 mg/gds. Interestingly, wild mangrove Acremonium sp. MERV1 and Chaetomium sp. MERV7 strains and their fusant MERV6270 showed significant inhibition of hepatitis C virus with viral knockdown percent of −82.48, −82.44, and −97.37 %, respectively, compared to the control (100 %), which open a new era in combat epidemic viral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barry, I. H. (2003). American Family Physician, 67, 101–108.

    Google Scholar 

  2. Choo, Q. L., Richman, K. H., Han, J. H., Berger, K., Lee, C., Dong, C., Gallegos, C., Coit, D., Medina-Selby, R., & Barr, P. J. (1989). Proceedings of the National Academy of Sciences of the United States of America, 88, 2451–2455.

    Article  Google Scholar 

  3. Zhu, F., Chen, X., Yuan, Y., Huang, M., Sun, H., & Xiang, W. (2009). The Open Natural Products Journal, 2, 24–32.

    Article  CAS  Google Scholar 

  4. Sridhar, K. R. (2004). Current Science, 86, 1586–1587.

    Google Scholar 

  5. Vastrad, B. M., & Neelagund, S. E. (2012). International Journal of Current Pharmaceutical Research, 4(2), 101–108.

    CAS  Google Scholar 

  6. Feng, Y., Li, X. M., & Wang, B. G. (2007). Chinical Trade Herbarium Drugs, 38(9), 1301–1303.

    CAS  Google Scholar 

  7. Gromadzki, S., Ramani, R., & Chaturvedi, V. (2003). Journal of Clinical Microbiology, 41(1), 467.

    Article  Google Scholar 

  8. Kane, J., Summerbell, R., Sigler, L., et al. (1997). Laboratory handbook of dermatophytes. Belmont: Star Publishing Co.

    Google Scholar 

  9. Koneman, E. W. (2006). Color atlas and text book of diagnostic microbiology. Lippincott Williams and Wilkins, 6, 1187.

    Google Scholar 

  10. Larone, D. H. (2002). Medically important fungi: A guide to identification (4th ed.). Washington, D.C.: American Society for Microbiology Press.

    Google Scholar 

  11. Merz, W. G., & Roberts, G. D. (1995). In P. E. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover, & R. H. Yolken (Eds.), Manual of clinical microbiology (6th ed., pp. 709–722). Washington: ASM Press.

    Google Scholar 

  12. Rebell, G., & Taplin, D. (1974). Dermatophytes. Their recognition and identification. Coral Gables Florida. USA: University of Miami Press.

    Google Scholar 

  13. Rinaldi, M. G., Stevens, V. J., & Halde, C. (1973). Amer. Soc. Micro., Meeting, Miami

  14. Rifai, M. A. (1969). Mycol. Papers, 116, 1–116.

    Google Scholar 

  15. Gilman, J. C. (1971). A manual of soil fungi (2nd ed.). Ames, Iowa: Iowa State College Press.

    Google Scholar 

  16. Kohlmeyer, J., & Kohlmeyer, E. (1979). Marine mycology. The higher fungi: New York, Academic Press.

    Google Scholar 

  17. Samson, R. A., & Gams, W. (1984). Antonie Van Leeuwenhoek, 50, 815–824.

    Article  CAS  Google Scholar 

  18. Petrini, O. (1986). Taxonomy of endophytic fungi of aerial plant tissues. Microbiology of the Phyllosphere (Fokkema, N. J., & Van Den Heuvel, J., eds.) pp 175–187.

  19. Blomquist, G., Andersson, B., Andersson, K., & Brondz, I. (1992). Journal of Microbiological Methods, 16(1), 59–68.

    Article  CAS  Google Scholar 

  20. Stahl, P. D., & Klug, M. J. (1996). Appl. Environ. Microbiol, 62(11), 4136–4146.

    CAS  Google Scholar 

  21. Pitt, J. I., Samson, R. A., & Frisvad, J. C. (2000). in Integration of modern methods for Penicillium and Aspergillus classification (Samson, R. A., & Pitt, J. I., eds.), Amsterdam, Harwood Academic Publishers.

  22. Strobel, G. A., Dirksie, E., Sears, J., & Markworth, C. (2001). Microbiology, 147, 2943–2950.

    CAS  Google Scholar 

  23. Hewitt, W., & Vincent, S. (1989). Theory and application of microbiological assay (pp. 38–79). New York: Academic press.

    Book  Google Scholar 

  24. Mondall, N. K., Mojumdar, A., Chatterje, S. K., Banerjee, A., Datta, J. K., & Gupta, S. (2009). Appl. Sci. Environ. Manage., 13(1), 49–53.

    Google Scholar 

  25. Augustine, A., Joseph, I., & Raj, R. P. (2006). Journal of Marine Biology Assessment India, 48(2), 139–146.

    Google Scholar 

  26. El-Bondkly, A. M. (2012). Applied Biochemistry and Biotechnology, 167(8), 2160–2173.

    Article  CAS  Google Scholar 

  27. El-Bondkly, A. M., & El-Gendy, M. M. A. (2012). Antonie Van Leeuwenhoek, 101, 331–346.

    Article  CAS  Google Scholar 

  28. Collins, C. H., Lyne, P. M., & Granje, J. M. (1995). Microbiological methods (pp. 129–31). London: Butterworth and Heinemann Publishers.

    Google Scholar 

  29. Hammer, K. A., Carson, C. F., & Riley, T. V. (2002). The Journal of Antimicrobial Chemotherapy, 50, 195–9.

    Article  CAS  Google Scholar 

  30. Lavermicocca, P., Valerio, F., & Visconti, A. (2003). Applied and Environmental Microbiology, 69, 634–40.

    Article  CAS  Google Scholar 

  31. Salkin, I. F. (1973). Applied Microbiology, 26, 134–137.

    CAS  Google Scholar 

  32. Singh, S., & Beena, P. M. (2003). Indian Journal of Medicine Microbiology, 21, 21–24.

    CAS  Google Scholar 

  33. Madhavi, S., Rama, R. M. V., & Jyothsna, K. (2011). Annals of Biological Research, 2(3), 88–93.

    Google Scholar 

  34. Salkin, I. F., Padhye, A., & Kemna, M. E. (1997). Journal of Clinical Microbiology, 35(10), 2660–2662.

    CAS  Google Scholar 

  35. Gupta, A. K., Ryder, J. E., Baran, R., & Summerbell, R. C. (2003). Dermatologic Clinics, 21, 257–268.

    Article  Google Scholar 

  36. Wang, L., Ma, L., Leng, W., Liu, T., Yu, L., Yang, J., Yang, L., Zhang, W., Zhang, Q., Dong, J., Xue, Y., Zhu, Y., Xu, X., Wan, Z., Ding, G., Yu, F., Tu, K., Li, Y., Li, R., Shen, Y., & Jin, Q. (2006). BMC Genomics, 7, 255.

    Article  Google Scholar 

  37. Mejia, L. C., Rojas, E. I., Maynard, Z., Bael, S. V., Arnold, A. E., Hebbar, P., Samules, G. J., Robbins, N., & Herre, E. A. (2008). Biological Control, 46(1), 4–14.

    Article  Google Scholar 

  38. Huang, Z., Cai, X., Shao, C., She, Z., Xia, X., Chen, Y., Yang, J., Zhou, S., & Lin, Y. (2008). Phytochemistry, 69(7), 1604–1608.

    Article  CAS  Google Scholar 

  39. Lin, Y., Wu, X., Deng, Z., Wang, J., Zhou, S., Vrijmoed, L. P., & Jones, E. B. G. (2002). Phytochemistry, 59(4), 469–471.

    Article  CAS  Google Scholar 

  40. Subramaniyam, R., & Vimala, R. (2012). I.J.S.N., 3(3), 480–486.

    CAS  Google Scholar 

  41. Alania, F., Groveb, J. A., Anderson, W. A., & Moo-Young, M. (2009). Biochemical Engineering Journal, 44, 106–110.

    Article  Google Scholar 

  42. Barrios-Gonzalez, J., Fernandez, F. J., Tomasini, A., & Mejia, A. (2005). Malaysian Journal of Microbiology, 1(1), 1–6.

    Google Scholar 

  43. Prabhakar, M., Lingappa, K., Babu, V., Amena, S., Vishalakshi, N., & Mahesh, D. (2012). Journal of Recent Advances in Applied Sciences, 27, 01–05.

    Google Scholar 

  44. Zhihui, B., Bo, J., Yuejie, L., Jian, C., & Zuming, L. (2008). Journal of Environmental Sciences, 20, 353–358.

    Article  Google Scholar 

  45. Tsuchinari, M., Shimanuki, K., Hiramatsu, F., Murayama, T., Koseki, T., & Shiono, Z. Y. (2007). Naturforsch, 62b, 1203–1207.

    Google Scholar 

  46. Ali, H. K. Q., & Zulkali, M. M. D. (2011). Croatian Journal of Food Technology Biotechnology and Nutrition, 6(1–2), 5–12.

    Google Scholar 

  47. Shaligram, N. S., Singh, S. K., Singhal, R. S., Szakacs, G., & Pandey, A. (2009). Journal of Microbiology and Biotechnology, 19(7), 690–697.

    Google Scholar 

  48. Sayed, S. K. I., El-Ezaby, K. H., & Groendijk, L. (2005). Ninth International Water Technology Conference, IWTC9, Sharm El-Sheikh, Egypt – 53

  49. Khaliq, S., Rashid, N., Akhtar, K., & Ghauri, M. A. (2009). Letters in Applied Microbiology, 49, 635–640.

    Article  CAS  Google Scholar 

  50. Sabat, J., & Gupta, N. (2009). Brazilian Archives of Biology and Technology, 52(4), 809–818.

    Article  CAS  Google Scholar 

  51. Kumar, S., & Kaushik, N. (2013). PLoS ONE, 8(2), e56202. doi:10.1371/journal.pone.0056202.

    Article  CAS  Google Scholar 

  52. El-Bondkly, A. M., El-Gendy, M. M. A., & Bassyouni, R. H. (2012). Antonie Van Leeuwenhoek, 102, 719–734.

    Article  CAS  Google Scholar 

  53. Abian, O., Vega, S., Sancho, J., & Velazquez-Campoy, A. (2013). PLoS ONE, 8(7), 1–10.

    Article  Google Scholar 

  54. Kumar, S., Aharwal, R. P., Shukla, H., Rajak, R. C., & Sandhu, S. S. (2014). World Journal of Pharmacy and Pharmaceutical Sciences, 3(2), 1179–1197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervat M. A. El-Gendy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gendy, M.M.A., El-Bondkly, A.M.A. & Yahya, S.M.M. Production and Evaluation of Antimycotic and Antihepatitis C Virus Potential of Fusant MERV6270 Derived from Mangrove Endophytic Fungi Using Novel Substrates of Agroindustrial Wastes. Appl Biochem Biotechnol 174, 2674–2701 (2014). https://doi.org/10.1007/s12010-014-1218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1218-2

Keywords

Navigation