Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2245–2256 | Cite as

Production and Properties of a Surface-Active Lipopeptide Produced by a New Marine Brevibacterium luteolum Strain

  • W. F. D. Vilela
  • S. G. Fonseca
  • F. Fantinatti-Garboggini
  • V. M. Oliveira
  • M. NitschkeEmail author


Microbial-derived surfactants are molecules of great interest due to their environmentally friendly nature and low toxicity; however, their production cost is not competitive when compared to synthetics. Marine microorganisms are exposed to extremes of pressure, temperature, and salinity; hence, they can produce stable compounds under such conditions that are useful for industrial applications. A screening program to select marine bacteria able to produce biosurfactant using low-cost substrates (mineral oil, sucrose, soybean oil, and glycerol) was conducted. The selected bacterial strain showed potential to synthesize biosurfactants using mineral oil as carbon source and was identified as Brevibacterium luteolum. The surface-active compound reduced the surface tension of water to 27 mN m−1 and the interfacial tension (water/hexadecane) to 0.84 mN m−1 and showed a critical micelle concentration of 40 mg L−1. The biosurfactant was stable over a range of temperature, pH, and salt concentration and the emulsification index (E24) with different hydrocarbons ranging from 60 to 79 %. Structural characterization revealed that the biosurfactant has a lipopeptide nature. Sand washing removed 83 % of crude oil demonstrating the potential of the biosurfactants (BS) for bioremediation purposes. The new marine B. luteolum strain showed potential to produce high surface-active and stable molecule using a low-cost substrate.


Biosurfactants Mineral oil Marine bacteria Brevibacterium 



Authors would like to thank FAPESP for financial support and to CAPES for fellowship. Authors also thank to Dr. Roberto Berlinck for providing the marine bacteria.


  1. 1.
    Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Smyth, T. J., & Marchant, R. (2010). Applied Microbiology and Biotechnology, 87, 427–444.CrossRefGoogle Scholar
  2. 2.
    Rosenberg, E., & Ron, E. Z. (1999). Applied Microbiology and Biotechnology, 52, 154–162.CrossRefGoogle Scholar
  3. 3.
    Cameotra, S. S., Makkar, R. S., Kaur, J., & Mehta, S. K. (2010). Advances in Experimental Medicine and Biology, 672, 261–280.CrossRefGoogle Scholar
  4. 4.
    Nitschke, M., & Costa, S. G. V. A. O. (2007). Trends in Food Science and Technology, 18, 252–259.CrossRefGoogle Scholar
  5. 5.
    Pacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). International Journal of Molecular Sciences, 12, 633–654.CrossRefGoogle Scholar
  6. 6.
    Nitschke, M., & Costa, S.G.V.A.O. (2014). In: C.N. Mulligan, S.K. Sharma, and A. Mudhoo (Eds), Biosurfactants: recent trends and applications (pp. 177–196). Boca Raton: CRC Press.Google Scholar
  7. 7.
    Gudina, E. J., Rangarajan, V., Sen, R., & Rodrigues, L. R. (2013). Trends Pharmacological Sciences, 34, 667–675.CrossRefGoogle Scholar
  8. 8.
    Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). AMB Express, 1, 5.CrossRefGoogle Scholar
  9. 9.
    Kennedy, J., Marchesi, J. R., & Dobson, A. D. W. (2008). Microbial Cell Factories, 7, 27.CrossRefGoogle Scholar
  10. 10.
    Satpute, S. K., Banat, I. M., Dhakephalkar, P. K., Banpurkar, A. G., & Chopade, B. A. (2010). Biotechnology Advances, 28, 436–450.CrossRefGoogle Scholar
  11. 11.
    Menezes, C. B. A., Bonugli-Santos, R. C., Miqueletto, P. B., Passarini, M. R. Z., Silva, C. H. D., Justo, M. R., Leal, R. R., Fantinatti-Garboggini, F., Oliveira, V. M., Berlinck, R. G. S., & Sette, L. D. (2010). Microbiological Research, 165, 466–482.CrossRefGoogle Scholar
  12. 12.
    Tugrul, T., & Cansunar, E. (2005). World Journal of Microbiology and Biotechnology, 21, 851–853.CrossRefGoogle Scholar
  13. 13.
    Pospiech, A., & Neumann, B. (1995). Technical Tips, 11, 217–218.Google Scholar
  14. 14.
    Lane, D.J. (1991). In: M. Goodfellow and E. Stackebrandt (Eds), Nucleic acid techniques in bacterial systematics (pp. 115–147), New York: Wiley.Google Scholar
  15. 15.
    Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. (1997). Applied and Environmental Microbiology, 63, 3233–3241.Google Scholar
  16. 16.
    Chun, J. (1995), PhD thesis, University of Newcastle upon Tyne, England.Google Scholar
  17. 17.
    Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Genome Research, 8, 175–185.CrossRefGoogle Scholar
  18. 18.
    Gordon, D., Abajian, C., & Green, P. (1998). Genome Research, 8, 195–202.CrossRefGoogle Scholar
  19. 19.
    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 24, 4876–4882.CrossRefGoogle Scholar
  20. 20.
    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  21. 21.
    Kimura, M. (1980). Journal of Molecular Evolution, 16, 111–120.CrossRefGoogle Scholar
  22. 22.
    Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.Google Scholar
  23. 23.
    Lowry, O. H., Rosebough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  24. 24.
    Iqbal, S., Khali, Z. M., & Malik, K. A. (1995). Letters in Applied Microbiology, 21, 176–179.CrossRefGoogle Scholar
  25. 25.
    Urum, K., Pekdemir, T., & Copur, M. (2004). Journal of Colloids Interface Science, 276, 456–464.CrossRefGoogle Scholar
  26. 26.
    Ron, E. Z., & Rosenberg, E. (2001). Environmental Microbiology, 3, 229–236.CrossRefGoogle Scholar
  27. 27.
    Costa, S. G. V. A. O., Lépine, F., Milot, S., Déziel, E., Nitschke, M., & Contiero, J. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 1063–1072.CrossRefGoogle Scholar
  28. 28.
    Ferhat, S., Mnif, S., Badis, A., Eddouaouda, K., Alouaoui, R., Boucherit, A., Mhiri, N., Moulai-Mostefa, N., & Sayadi, S. (2011). International Biodeterioration and Biodegradation, 65, 1182–1188.CrossRefGoogle Scholar
  29. 29.
    Nitschke, M., & Pastore, G. M. (2004). Applied Biochemistry and Biotechnology, 112, 163–172.CrossRefGoogle Scholar
  30. 30.
    Haba, E., Espuny, M. J., Busquets, M., & Manresa, A. (2000). Journal of Applied Microbiology, 88, 379–387.CrossRefGoogle Scholar
  31. 31.
    Kiran, G. S., Thomas, T. A., Selvin, J., Sabarathnam, B., & Lipton, A. P. (2010). Bioresource Technology, 101, 2389–2396.CrossRefGoogle Scholar
  32. 32.
    Chen, J., Huang, P. T., Zhang, K. Y., & Ding, F. R. (2012). Journal of Applied Microbiology, 112, 660–671.CrossRefGoogle Scholar
  33. 33.
    Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., & Kokare, C. (2012). Desalination, 285, 198–204.CrossRefGoogle Scholar
  34. 34.
    Costa, S. G. V. A. O., Nitschke, M., Lépine, F., Déziel, E., & Contiero, J. (2010). Process Biochemistry, 45, 1511–1516.CrossRefGoogle Scholar
  35. 35.
    Nitschke, M., & Pastore, G. M. (2006). Bioresource Technology, 97, 336–341.CrossRefGoogle Scholar
  36. 36.
    Kiran, S., Sabua, A., & Selvin, J. (2010). Journal of Biotechnology, 148, 221–225.CrossRefGoogle Scholar
  37. 37.
    Arima, K., Kakinuma, A., & Tamura, G. (1968). Biochemical and Biophysical Research Communications, 31, 488–494.CrossRefGoogle Scholar
  38. 38.
    Ongena, M., & Jacques, P. (2008). Trends in Microbiology, 16, 115–125.CrossRefGoogle Scholar
  39. 39.
    Seydlová, G., & Svobodová, J. (2008). Center Europe Journal Medicine, 3, 123–133.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • W. F. D. Vilela
    • 1
  • S. G. Fonseca
    • 2
  • F. Fantinatti-Garboggini
    • 2
  • V. M. Oliveira
    • 2
  • M. Nitschke
    • 1
    Email author
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e AgrícolasUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations