Skip to main content

Advertisement

Log in

Effect of Organic Loading Rate and Fill Time on the Biohydrogen Production in a Mechanically Stirred AnSBBR Treating Synthetic Sucrose-Based Wastewater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the feasibility to produce biohydrogen of a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) treating sucrose-based synthetic wastewater. The bioreactor performance (30 °C) was evaluated as to the combined effect of fill time (2, 1.5, and 1 h), cycle length (4, 3, and 2 h), influent concentration (3,500 and 5,250 mg chemical oxygen demand (COD) L−1) and applied volumetric organic load (AVOLCT from 9.0 to 27.0 g COD L−1 d−1). AVOLs were varied according to influent concentration and cycle length (t C). The results showed that increasing AVOLCT resulted in a decrease in sucrose removal from 99 to 86 % and in improvement of molar yield per removed load (MYRLS.n) from 1.02 mol H2 mol carbohydrate−1 at AVOLCT of 9.0 g COD L−1 d−1 to maximum value of 1.48 mol H2 mol carbohydrate−1, at AVOLCT of 18.0 g COD L−1 d−1, with subsequent decrease. Increasing AVOLCT improved the daily molar productivity of hydrogen (MPr) from 15.28 to 49.22 mol H2 m−3 d−1. The highest daily specific molar productivity of hydrogen (SMPr) obtained was 8.71 mol H2 kg TVS−1 d−1 at an AVOLCT of 18.0 g COD L−1 d−1. Decreasing t C from 4 to 3 h decreased sucrose removal, increased MPr, and improved SMPr. Increasing influent concentration decreased sucrose removal only at t C of 2 h, improved MYRLS,n and MPr at all t C, and also improved SMPr at t C of 4 and 3 h. Feeding strategy had a significant effect on biohydrogen production; increasing fill time improved sucrose removal, MPr, SMPr, and MYRLS,n for all investigated AVOLCT. At all operational conditions, the main intermediate metabolic was acetic acid followed by ethanol, butyric, and propionic acids. Increasing fill time resulted in a decrease in ethanol concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PA:

Partial alkalinity (mg CaCO3 L−1)

IA:

Intermediate alkalinity (mg CaCO3 L−1)

TA:

Total alkalinity (mg CaCO3 L−1)

BA:

Bicarbonate alkalinity (mg CaCO3 L−1)

TVA:

Total volatile acids (mg HAc L−1)

TS:

Total solids concentration (mg TS L−1)

TVS:

Total volatile solids concentration (mg TVS L−1)

TSS:

Total suspended solids concentration (mg TSS L−1)

VSS:

Volatile suspended solids concentration (mg VSS L−1)

pH:

Hydrogen ion potential (μ)

C CT :

Concentration based on organic matter for unfiltered samples in the influent (mg DQO L−1)

C ST :

Concentration based on carbohydrates (sucrose) for unfiltered samples in the influent (mg carbohydrate L−1)

C CT,E :

Concentration based on organic matter for unfiltered samples in the effluent (mg DQO L−1)

C CF,E :

Concentration based on organic matter for filtered samples in the effluent (mg DQO L−1)

C ST,E :

Concentration based carbohydrates (sucrose) in the influent for unfiltered samples (mg carbohydrate L−1)

C SF,E :

Concentration based on carbohydrates (sucrose) for filtered samples in the effluent (mg carbohydrate L−1)

AVOLCT :

AVOL based on organic matter (g COD L−1 d−1)

AVOLST :

AVOL based on carbohydrate (sucrose) (g carbohydrate L−1 d−1)

ASOLCT :

Applied specific organic load based on organic matter (g DQO g SVT−1 d−1)

ASOLST :

Applied specific organic load based on carbohydrate (sucrose) (g SAC g SVT−1 d−1)

C′X − TVS :

Concentration of biomass in the reactor in total volatile solids per mass of support (g TVS g support−1)

ε CT :

Removal efficiency based on organic matter (COD) for unfiltered samples (%)

ε CF :

Removal efficiency based on organic matter (COD) for filtered samples (%)

ε ST :

Removal efficiency based on carbohydrates (sucrose) for unfiltered samples (%)

ε SF :

Removal efficiency based on carbohydrates (sucrose) for filtered samples (%)

M T − IS + B :

Total mass of the inert support and the biomass in the reactor (g)

M S − IS + B :

Sample mass of the inert support and the biomass in the reactor (g)

M S − TS :

Total solids mass (TS) of the biomass sample (g)

M S − TVS :

Total volatile solids mass (TVS) of the biomass sample (g)

M TVS :

Total biomass in the reactor in total volatile solids (g TVS)

N :

Number of cycles in a day

n CH4 :

Daily molar production of methane (mol H2 d−1)

n CO2 :

Daily molar production of carbon dioxide (mol H2 d−1)

n H2 :

Daily molar production of hydrogen (mol H2 d−1)

MPr:

Daily molar productivity of hydrogen (mol H2 m−3 d−1)

SMPr:

Daily specific molar productivity of hydrogen (mol H2 kg TVS−1 d−1)

MYALS,n :

Molar yield per applied load based on carbohydrates (sucrose) expressed as mole (mol H2 mol carbohydrate−1)

MYRLS,n :

Molar yield per removed load based on carbohydrates (sucrose) expressed as mole (mol H2 mol carbohydrate−1)

MYALS,n :

Molar yield per applied load based on organic matter expressed as mole (mol H2 mol DQO−1)

MYRLS,n :

Molar yield per removed load based on organic matter expressed as mole (mol H2 mol DQO−1)

MYALC,m :

Molar yield per applied load based on organic matter expressed as kg (mol H2 kg DQO−1)

MYRLC,m :

Molar yield per removed load based on organic matter expressed as kilograms (mol H2 kg DQO−1)

t C :

Cycle length (h cycle−1)

t F :

Fill time (h cycle−1)

V F :

Volume of wastewater fed during the cycle (L cycle−1)

V R :

Volume of liquid medium in the reactor (L)

V G :

Volume of total biogas produced in the STP per cycle (mL STP d−1)

EtOH:

Ethanol

HAC:

Acetic acid

HPr:

Propionic acid

HBut:

Butyric acid

N SF :

Molar concentration of sucrose for filtered samples (mmol carbohydrate L−1)

N G :

Molar quantity of biogas (H2, CO2, and CH4) produced along a cycle (mmol)

F F :

Feeding flow of the period in fed batch (L h−1)

v SF :

Carbohydrate consumption rate for filtered samples (mmol L−1 h−1)

v H2 :

Hydrogen formation rate (mmol L−1 h−1)

References

  1. Wu, S. Y., Lin, C. N., Chang, J. S., Lee, K. S., & Lin, P. J. (2003). Biotechnology Progress, 19, 828–832.

    Article  CAS  Google Scholar 

  2. Alzate-Gaviria, L. M., Sebastian, P. J., Pérez, A., & Eapen, D. (2007). International Journal of Hydrogen Energy, 32, 3141–3146.

    Article  CAS  Google Scholar 

  3. Leite, J. A. C., Fernandes, B. S., Pozzi, E., Barboza, M., & Zaiat, M. (2008). International Journal of Hydrogen Energy, 33, 579–586.

    Article  CAS  Google Scholar 

  4. Das, D., & Veziroglu, T. N. (2008). International Journal of Hydrogen Energy, 33, 6046–6057.

    Article  CAS  Google Scholar 

  5. Show, K.-Y., Lee, D.-J., & Chang, J.-S. (2011). Bioresource Technology, 102, 8524–8533.

    Article  CAS  Google Scholar 

  6. Wang, J., & Wan, W. (2009). International Journal of Hydrogen Energy, 34, 799–811.

    Article  CAS  Google Scholar 

  7. Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2003). Journal of Environmental Management, 69, 193–200.

    Article  Google Scholar 

  8. Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2009). Applied Biochemistry and Biotechnology, 157, 140–158.

    Article  CAS  Google Scholar 

  9. Novaes, L. F., Borges, L. O., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). Applied Biochemistry and Biotechnology, 162, 885–899.

    Article  Google Scholar 

  10. Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Canto, C. S. A., & Zaiat, M. (2011). Applied Biochemistry and Biotechnology, 165, 347–368.

    Article  CAS  Google Scholar 

  11. Lovato, G., Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2012). Applied Biochemistry and Biotechnology, 166, 2007–2029.

    Article  CAS  Google Scholar 

  12. Selma, V. C., Cotrim, L. H. B., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). Applied Biochemistry and Biotechnology, 162, 2365–2380.

    Article  CAS  Google Scholar 

  13. Silva, R. C., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2013). Applied Biochemistry and Biotechnology, 170(01), 105–118.

    Article  CAS  Google Scholar 

  14. Albanez, R., Canto, C. S. A., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2009). Revista de Química Teórica Y Aplicada - Afinidad, 66, 44–55.

    CAS  Google Scholar 

  15. Friedl, G. F., Mockaitis, G., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2009). Applied Biochemistry and Biotechnology, 159, 95–109.

    Article  CAS  Google Scholar 

  16. Mockaitis, G., Friedl, G. F., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). Bioresource Technology, 101, 6642–6650.

    Article  CAS  Google Scholar 

  17. Manssouri, M., Rodrigues, J. A. D., Ratusznei, S., & Zaiat, M. (2013). Applied Biochemistry and Biotechnology, 171, 1832–1854.

    Article  CAS  Google Scholar 

  18. Zaiat, M., Rodrigues, J. A. D., Ratusznei, S. M., Camargo, E. F. M., & Borzani, W. (2001). Applied Microbiology and Biotechnology, 55, 29–35.

    Article  CAS  Google Scholar 

  19. Ren, N., Li, J., Li, B., Wang, Y., & Liu, S. (2006). Journal of Hydrogen Energy, 31, 2147–2157.

    Article  CAS  Google Scholar 

  20. Sreethawong, T., Chatsiriwatana, S., Rangsunvigit, P., & Chavadej, S. (2010). International Journal of Hydrogen Energy, 35, 4092–4102.

    Article  CAS  Google Scholar 

  21. Cheong, D. Y., & Hansen, C. L. (2008). Bioresource Technology, 99, 5058–5068.

    Article  CAS  Google Scholar 

  22. Michelan, R., Zimmer, T. R., Rodrigues, J. A. D., Ratusznei, S. M., Moraes, D., Zaiat, M., & Foresti, E. (2009). Journal of Environmental Management, 90, 1357–1364.

    Article  CAS  Google Scholar 

  23. Dubois, S. M., Gilles, K. A., Hamilton, J. L., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 228, 13–21.

    Google Scholar 

  24. APHA. (1995). Standard methods for the examination of water and wastewater, 19th ed, Washington, DC.

  25. Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Journal of Water Pollution Control Federation, 58, 406–411.

    CAS  Google Scholar 

  26. Kim, D.-H., Kim, S.-H., Kim, K.-Y., & Sinh, H.-S. (2010). International Journal of Hydrogen Energy, 35, 1590–1594.

    Article  CAS  Google Scholar 

  27. Kargi, F., & Pamukoglu, M. Y. (2009). International Journal of Hydrogen Energy, 34, 2940–2946.

    Article  CAS  Google Scholar 

  28. Fontes Lima, D. M., & Zaiat, M. (2012). International Journal of Hydrogen Energy, 37, 9630–9635.

    Article  CAS  Google Scholar 

  29. Penteado, E. D., Lazaro, C. Z., Sakamoto, I. K., & Zaiat, M. (2013). International Journal of Hydrogen Energy, 38, 6137–6145.

    Article  CAS  Google Scholar 

  30. Arooj, M. F., Han, S., Kim, S., Kim, D., & Shin, H. (2008). International Journal of Hydrogen Energy, 33, 6509–6514.

    Article  CAS  Google Scholar 

  31. Chen, W., Sung, G. S., & Chen, S. (2009). International Journal of Hydrogen Energy, 34, 227–234.

    Article  CAS  Google Scholar 

  32. Lin, C.-Y., & Jo, C.-H. (2003). Journal of Chemical Technology & Biotechnology, 78, 678–684.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Fundação de Amparo a Pesquisa do Estado de São Paulo—FAPESP (Process 09/15.984-0, 10/19.315-3, and 11/13.750-2). The authors gratefully acknowledge Dr. Baltus C. Bonse for the revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. D. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, R.K., Lima, D.M.F., Rodrigues, J.A.D. et al. Effect of Organic Loading Rate and Fill Time on the Biohydrogen Production in a Mechanically Stirred AnSBBR Treating Synthetic Sucrose-Based Wastewater. Appl Biochem Biotechnol 174, 2326–2349 (2014). https://doi.org/10.1007/s12010-014-1205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1205-7

Keywords

Navigation