Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2257–2266 | Cite as

Effect of Lactoferrin on Odontogenic Differentiation of Stem Cells Derived from Human 3rd Molar Tooth Germ

  • Pakize Neslihan Taşlı
  • Fikrettin ŞahinEmail author


Stem cell technology has been a great hope for the treatment of many common tissue regeneration-related diseases. Therefore, the main challenge in hard tissue engineering is to make a successful combination of stem cells and efficient inductors such as biomaterials or growth factors, in the concept of stem cell conversion into odontogenic cell. Even though lactoferrin has been reported to promote bone growth in vivo, the molecular mechanism of teeth formation has not been elucidated yet. Different concentrations of lactoferrin were prepared for the analysis of cell toxicity and differentiation evaluations. The odontogenic differentiation of human tooth germ stem cells (hTGSCs) was assessed by gene expression analysis, determination of protein levels in odontogenic differentiation-related protein, measuring alkaline phosphatase (ALP) activity, mineralization, and calcium deposit levels. Lactoferrin-treated group showed the highest ALP activity as opposed to the other groups which were untreated. In addition, the gene expression levels as well as the protein levels of odontogenic factors were found to be high in compared to the control groups. In the current study, it is shown for the first time that there is a significant increase in odontogenic differentiation capacity in hTGSCs when lactoferrin is applied in vitro. The study offers a considerable promise for the development of pulp regeneration by using stem cell technology combined with lactoferrin in functional tooth tissue engineering.


Lactoferrin Odontogenesis Human tooth germ Mesenchymal stem cells Differentiation 



We would like to thank Safa Aydın for his help.

Conflict of Interest

The authors deny any conflicts of interest.


  1. 1.
    Murray, P. E., Garcia-Godoy, F., & Hargreaves, K. M. (2007). Regenerative endodontics: a review of current status and a call for action. Journal of Endodontics, 33, 377–390.CrossRefGoogle Scholar
  2. 2.
    Hermann, B. W. (1952). On the reaction of the dental pulp to vital amputation and calxyl capping. Deutsche zahnärztliche Zeitschrift, 7, 1446–1447.Google Scholar
  3. 3.
    Block, M. S., Cervini, D., Chang, A., & Gottsegen, G. B. (1995). Anterior maxillary advancement using tooth-supported distraction osteogenesis. Journal of Oral and Maxillofacial Surgery, 53, 561–565.CrossRefGoogle Scholar
  4. 4.
    Kassolis, J. D., Rosen, P. S., & Reynolds, M. A. (2000). Alveolar ridge and sinus augmentation utilizing platelet-rich plasma in combination with freeze-dried bone allograft: case series. Journal of Periodontology, 71, 1654–1661.CrossRefGoogle Scholar
  5. 5.
    Fujimura, K., Bessho, K., Kusumoto, K., Ogawa, Y., & Iizuka, T. (1995). Experimental studies on bone inducing activity of composites of atelopeptide type I collagen as a carrier for ectopic osteoinduction by rhBMP-2. Biochemical and Biophysical Research Communications, 208, 316–322.CrossRefGoogle Scholar
  6. 6.
    Heijl, L., Heden, G., Svardstrom, G., & Ostgren, A. (1997). Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. Journal of Clinical Periodontology, 24, 705–714.CrossRefGoogle Scholar
  7. 7.
    Lin, L., Chen, M. Y., Ricucci, D., & Rosenberg, P. A. (2010). Guided tissue regeneration in periapical surgery. Journal of Endodontics, 36, 618–625.CrossRefGoogle Scholar
  8. 8.
    Takayama, S., Murakami, S., Shimabukuro, Y., Kitamura, M., & Okada, H. (2001). Periodontal regeneration by FGF-2 (bFGF) in primate models. Journal of Dental Research, 80, 2075–2079.CrossRefGoogle Scholar
  9. 9.
    Linde, A., & Goldberg, M. (1993). Dentinogenesis. Critical Reviews in Oral Biology and Medicine, 4, 679–728.Google Scholar
  10. 10.
    Yalvac, M. E., Yilmaz, A., Mercan, D., Aydin, S., Dogan, A., Arslan, A., Demir, Z., Salafutdinov, I. I., Shafigullina, A. K., Sahin, F., Rizvanov, A. A., & Palotas, A. (2011). Differentiation and neuro-protective properties of immortalized human tooth germ stem cells. Neurochemical Research, 36, 2227–2235.CrossRefGoogle Scholar
  11. 11.
    Tasli, P. N., Yalvac, M. E., Sofiev, N., & Sahin, F. (2013). Effect of F68, F127, and P85 pluronic block copolymers on odontogenic differentiation of human tooth germ stem cells. Journal of Endodontics, 39, 1265–1271.CrossRefGoogle Scholar
  12. 12.
    Tasli, P. N., Tapsin, S., Demirel, S., Yalvac, M. E., Akyuz, S., Yarat, A., & Sahin, F. (2013). Isolation and characterization of dental pulp stem cells from a patient with Papillon-Lefevre syndrome. Journal of Endodontics, 39, 31–38.CrossRefGoogle Scholar
  13. 13.
    Dogan, A., Yalvac, M. E., Sahin, F., Kabanov, A. V., Palotas, A., & Rizvanov, A. A. (2012). Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. International Journal of Nanomedicine, 7, 4849–4860.Google Scholar
  14. 14.
    Tasli, P. N., Aydin, S., Yalvac, M. E., & Sahin, F. (2014). Bmp 2 and Bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells. Applied Biochemistry and Biotechnology, 173, 3016–3025.CrossRefGoogle Scholar
  15. 15.
    Tasli, P. N., Dogan, A., Demirci, S., & Sahin, F. (2013). Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro. Biological Trace Element Research, 153, 419–427.CrossRefGoogle Scholar
  16. 16.
    Metz-Boutigue, M. H., Jolles, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J., & Jolles, P. (1984). Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. European Journal of Biochemistry, 145, 659–676.CrossRefGoogle Scholar
  17. 17.
    Lonnerdal, B., & Iyer, S. (1995). Lactoferrin: molecular structure and biological function. Annual Review of Nutrition, 15, 93–110.CrossRefGoogle Scholar
  18. 18.
    Nagasawa, T., Kiyosawa, I., & Kuwahara, K. (1972). Amounts of lactoferrin in human colostrum and milk. Journal of Dairy Science, 55, 1651–1659.CrossRefGoogle Scholar
  19. 19.
    Sanchez, L., Aranda, P., Perez, M. D., & Calvo, M. (1988). Concentration of lactoferrin and transferrin throughout lactation in cow’s colostrum and milk. Biological Chemistry Hoppe-Seyler, 369, 1005–1008.CrossRefGoogle Scholar
  20. 20.
    Cornish, J., Callon, K. E., Naot, D., Palmano, K. P., Banovic, T., Bava, U., Watson, M., Lin, J. M., Tong, P. C., Chen, Q., Chan, V. A., Reid, H. E., Fazzalari, N., Baker, H. M., Baker, E. N., Haggarty, N. W., Grey, A. B., & Reid, I. R. (2004). Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology, 145, 4366–4374.CrossRefGoogle Scholar
  21. 21.
    Yalvac, M. E., Rizvanov, A. A., Kilic, E., Sahin, F., Mukhamedyarov, M. A., Islamov, R. R., & Palotas, A. (2009). Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Current Pharmaceutical Design, 15, 3908–3916.CrossRefGoogle Scholar
  22. 22.
    Caccavo, D., Sebastiani, G. D., Di Monaco, C., Guido, F., Galeazzi, M., Ferri, G. M., Bonomo, L., & Afeltra, A. (1999). Increased levels of lactoferrin in synovial fluid but not in serum from patients with rheumatoid arthritis. International Journal of Clinical and Laboratory Research, 29, 30–35.CrossRefGoogle Scholar
  23. 23.
    Nam, S., Won, J. E., Kim, C. H., & Kim, H. W. (2011). Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. Journal of Tissue Engineering, 2011, 812547.Google Scholar
  24. 24.
    Zhu, Q., Gibson, M. P., Liu, Q., Liu, Y., Lu, Y., Wang, X., Feng, J. Q., & Qin, C. (2012). Proteolytic processing of dentin sialophosphoprotein (DSPP) is essential to dentinogenesis. Journal of Biological Chemistry, 287, 30426–30435.CrossRefGoogle Scholar
  25. 25.
    Lisignoli, G., Cristino, S., Piacentini, A., Toneguzzi, S., Grassi, F., Cavallo, C., Zini, N., Solimando, L., Mario Maraldi, N., & Facchini, A. (2005). Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials, 26, 5677–5686.CrossRefGoogle Scholar
  26. 26.
    Yagi, M., Suzuki, N., Takayama, T., Arisue, M., Kodama, T., Yoda, Y., Otsuka, K., & Ito, K. (2009). Effects of lactoferrin on the differentiation of pluripotent mesenchymal cells. Cell Biology International, 33, 283–289.CrossRefGoogle Scholar
  27. 27.
    Terasawa, M., Shimokawa, R., Terashima, T., Ohya, K., Takagi, Y., & Shimokawa, H. (2004). Expression of dentin matrix protein 1 (DMP1) in nonmineralized tissues. Journal of Bone and Mineral Metabolism, 22, 430–438.CrossRefGoogle Scholar
  28. 28.
    Fukumoto, S., Kiba, T., Hall, B., Iehara, N., Nakamura, T., Longenecker, G., Krebsbach, P. H., Nanci, A., Kulkarni, A. B., & Yamada, Y. (2004). Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. Journal of Cell Biology, 167, 973–983.CrossRefGoogle Scholar
  29. 29.
    Serigano, K., Sakai, D., Hiyama, A., Tamura, F., Tanaka, M., & Mochida, J. (2010). Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. Journal of Orthopaedic Research, 28, 1267–1275.CrossRefGoogle Scholar
  30. 30.
    Xiao, S., Yu, C., Chou, X., Yuan, W., Wang, Y., Bu, L., Fu, G., Qian, M., Yang, J., Shi, Y., Hu, L., Han, B., Wang, Z., Huang, W., Liu, J., Chen, Z., Zhao, G., & Kong, X. (2001). Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nature Genetics, 27, 201–204.CrossRefGoogle Scholar
  31. 31.
    Zhang, X., Zhao, J., Li, C., Gao, S., Qiu, C., Liu, P., Wu, G., Qiang, B., Lo, W. H., & Shen, Y. (2001). DSPP mutation in dentinogenesis imperfecta Shields type II. Nature Genetics, 27, 151–152.CrossRefGoogle Scholar
  32. 32.
    Holappa, H., Nieminen, P., Tolva, L., Lukinmaa, P. L., & Alaluusua, S. (2006). Splicing site mutations in dentin sialophosphoprotein causing dentinogenesis imperfecta type II. European Journal of Oral Sciences, 114, 381–384.CrossRefGoogle Scholar
  33. 33.
    Sreenath, T., Thyagarajan, T., Hall, B., Longenecker, G., D’Souza, R., Hong, S., Wright, J. T., MacDougall, M., Sauk, J., & Kulkarni, A. B. (2003). Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. Journal of Biological Chemistry, 278, 24874–24880.CrossRefGoogle Scholar
  34. 34.
    Owen, T. A., Aronow, M., Shalhoub, V., Barone, L. M., Wilming, L., Tassinari, M. S., Kennedy, M. B., Pockwinse, S., Lian, J. B., & Stein, G. S. (1990). Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. Journal of Cellular Physiology, 143, 420–430.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Genetics and Bioengineering, Faculty of Engineering and ArchitectureYeditepe UniversityKayisdagiTurkey

Personalised recommendations