Skip to main content

Advertisement

Log in

Microbially Induced Calcite Precipitation-based Sequestration of Strontium by Sporosarcina pasteurii WJ-2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Contamination by radioactive strontium (90Sr) is a significant environmental problem. Ureolytically driven calcium carbonate precipitation has been proposed for use in geotechnical engineering for soil remediation applications. In this study, 68 ureolytic bacterial strains were newly isolated from various environments. Of these, 19 strains were selected based on ureolytic activity shown when cultured on urea agar plates and identified through 16S rRNA gene sequencing. From these selected strains, Sporosarcina pasteurii WJ-2 (WJ-2) was selected for subsequent study. A simple method was developed to determine the effectiveness of microbially induced calcite precipitation (MICP). Unlike any other methods, it does not require advanced skills and sophisticated tools. Using this method, we were able to determine the ability of the bioconsolidated sand to retard the flow of crystal violet through the 25-mL column. Also, MICP by WJ-2 was evaluated for its potential to counteract Sr contamination in column experiments using natural sand. WJ-2-induced precipitation led to successful sequestration of approximately 80 % of the Sr from the soluble fraction of the sand. The utility of MICP in bioremediation was further confirmed through X-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Warren, L. A., Maurice, P. A., Parmar, N., & Ferris, F. G. (2001). Geomicrobiology Journal, 18, 93–115.

    Article  CAS  Google Scholar 

  2. Fujita, Y., Redden, G. D., Ingram, J. C., Cortez, M. M., Ferris, G. F., & Smith, R. W. (2004). Geochimica et Cosmochimica Acta, 68, 3261–3270.

    Article  CAS  Google Scholar 

  3. Davis, J. A., Fuller, C. C., & Cook, A. D. (1987). Geochimica et Cosmochimica Acta, 51, 1477–1490.

    Article  CAS  Google Scholar 

  4. Tesoriero, A. J., & Pankow, J. F. (1996). Geochimica et Cosmochimica Acta, 60, 1053–1063.

    Article  CAS  Google Scholar 

  5. Curti, E. (1999). Applied Geochemistry, 14, 433–445.

    Article  CAS  Google Scholar 

  6. Varenyam, A. X., Pan, L., Zhang, D. Y., & Fu, Q. L. (2011). Journal of Microbiology and Biotechnology, 22, 244–247.

    Google Scholar 

  7. Boquet, E., Boronat, A., & Cormenzana, A. R. (1973). Nature, 246, 527–529.

    Article  Google Scholar 

  8. Rivadeneyra, M. A., Delgado, R., Moral, A. D., Ferrer, M. R., & Cormenzana, A. R. (1993). FEMS Microbiology Ecology, 13, 197–204.

    Article  Google Scholar 

  9. Whiffin, V. S., Paassen, L. A., & Harkes, M. P. (2007). Geomicrobiology Journal, 24, 417–423.

    Article  CAS  Google Scholar 

  10. Hammes, F., & Verstraete, W. (2002). Reviews in Environmental Science and Biotechnology, 1, 3–7.

    Article  CAS  Google Scholar 

  11. Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Soil Biology & Biochemistry, 31, 1563–1571.

    Article  CAS  Google Scholar 

  12. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  13. Weatherburn, M. W. (1967). Analytical Chemistry, 39, 971–974.

    Article  CAS  Google Scholar 

  14. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  15. McCarty, G. W., Shogren, D. R., & Bremner, J. M. (1992). Biology and Fertility of Soils, 12, 261–264.

    Article  CAS  Google Scholar 

  16. Paulson, K. N., & Kurtz, L. T. (1969). Soil Science Society of America Journal, 33, 897–901.

    Article  CAS  Google Scholar 

  17. Chunxiang, Q., Jianyun, W., Ruixing, W., & Liang, C. (2009). Materials Science and Engineering: C, 29, 1273–1280.

    Article  Google Scholar 

  18. McConnaughey, T. A., & Whelan, J. F. (1997). Earth-Science Reviews, 42, 95–117.

    Article  CAS  Google Scholar 

  19. Bachmeier, K. L., Williams, A. E., Warmington, J. R., & Bang, S. S. (2002). Journal of Biotechnology, 93, 171–181.

    Article  CAS  Google Scholar 

  20. DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Ecological Engineering, 36, 197–210.

    Article  Google Scholar 

  21. Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Geomicrobiology Journal, 24, 417–423.

    Article  CAS  Google Scholar 

  22. Warren, L. A., Maurice, P. A., Parmar, N., & Ferris, F. G. (2001). Geomicrobiology Journal, 18, 93–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2011-0025229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seong So.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, CH., Choi, JH., Noh, J. et al. Microbially Induced Calcite Precipitation-based Sequestration of Strontium by Sporosarcina pasteurii WJ-2. Appl Biochem Biotechnol 174, 2482–2491 (2014). https://doi.org/10.1007/s12010-014-1196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1196-4

Keywords

Navigation