Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2079–2085 | Cite as

Biodesulfurization of a System Containing Synthetic Fuel Using Rhodococcus erythropolis ATCC 4277

  • Danielle Maass
  • Débora de Oliveira
  • Antônio A. Ulson de Souza
  • Selene M. A. Guelli U. SouzaEmail author
Article

Abstract

The burning of fossil fuels has released a large quantity of pollutants into the atmosphere. In this context, sulfur dioxide is one of the most noxious gas which, on reacting with moist air, is transformed into sulfuric acid, causing the acid rain. In response, many countries have reformulated their legislation in order to enforce the commercialization of fuels with very low sulfur levels. The existing desulfurization processes cannot remove such low levels of sulfur and thus a biodesulfurization has been developed, where the degradation of sulfur occurs through the action of microorganisms. Rhodococcus erythropolis has been identified as one of the most promising bacteria for use in the biodesulfurization. In this study, the effectiveness of the strain R. erythropolis ATCC 4277 in the desulfurization of dibenzothiophene (DBT) was evaluated in a batch reactor using an organic phase (n-dodecane or diesel) concentrations of 20, 80, and 100 % (v/v). This strain was able to degrade 93.3, 98.0, and 95.5 % of the DBT in the presence of 20, 80, and 100 % (v/v) of dodecane, respectively. The highest value for the specific DBT degradation rate was 44 mmol DBT · kg DCW−1 · h−1, attained in the reactor containing 80 % (v/v) of n-dodecane as the organic phase.

Keywords

Rhodococcus erythropolis ATCC 4277 Biodesulfurization Dibenzothiophene 

Notes

Acknowledgments

We are grateful to the following Brazilian Petroleum Agency program for financially supporting this study: Formação de Recursos Humanos da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis-ANP, through PRH-09/MECPETRO.

References

  1. 1.
    Onaka, T., Konishi, J., Ishii, Y., & Maruhashi, K. (2001). Journal of Bioscience and Bioengineering, 92, 193–196.CrossRefGoogle Scholar
  2. 2.
    Stanislaus, A., Marafi, A., & Rana, M. S. (2010). Catalysis Today, 153, 1–68.CrossRefGoogle Scholar
  3. 3.
    Song, C. (2003). Catalysis Today, 86, 211–263.CrossRefGoogle Scholar
  4. 4.
    Oyama, S. T., Gott, T., Zhao, H., & Lee, Y. (2008). Catalysis Today, 143, 94–107.CrossRefGoogle Scholar
  5. 5.
    Gupta, N., Roychoudhury, P. K., & Deb, J. K. (2005). Applied Microbiology and Biotechnology, 66, 356–366.CrossRefGoogle Scholar
  6. 6.
    Le Borgne, S., & Quintero, R. (2006). Fuel Processing Technology, 81, 155–169.CrossRefGoogle Scholar
  7. 7.
    Oldfield, C., Wood, N. T., Gilbert, S. C., Murray, F. D., & Faure, F. R. (1998). Van Leeuwenhoek Journal Microbial, 74, 119–132.CrossRefGoogle Scholar
  8. 8.
    Gray, K. A., Rhee, S., Chang, J. H., Chang, Y. K., & Chang, H. N. (1996). Abstracts of Papers of the American Chemical Society, 212, 54–58.Google Scholar
  9. 9.
    Kilbane, J. J., III, & Jackowski, K. (1992). Biotechnology and Bioengineering, 40, 1107–1114.CrossRefGoogle Scholar
  10. 10.
    Monticello, D. J. (2000). Current Opinion in Biotechnology, 11, 540–546.CrossRefGoogle Scholar
  11. 11.
    Folsom, B. R., Schieche, D. R., Digrazia, P. M., Werner, J., & Palmer, S. (1999). Applied and Environmental Microbiology, 65, 4967–4972.Google Scholar
  12. 12.
    Guchhait, S., Biswas, D., Bhattacharya, P., & Chowdhury, R. (2005). Chemical Engineering Journal, 112, 145–151.CrossRefGoogle Scholar
  13. 13.
    Li, F., Xu, P., Ma, C. Q., Luo, L. L., & Wang, X. S. (2005). Applied and Environmental Microbiology, 71, 276–281.CrossRefGoogle Scholar
  14. 14.
    McFarland, B. L. (1999). Current Opinion in Microbiology, 2, 257–264.CrossRefGoogle Scholar
  15. 15.
    Maghsoudi, S., Vossoughi, S., Kheirolomoom, A., Tanaka, E., & Katoh, S. (2001). Biochemical Engineering Journal, 8, 151–156.CrossRefGoogle Scholar
  16. 16.
    Yu, B., Ma, C., Zhou, W., Wang, Y., Cai, X., Tao, F., Zhang, Q., Tong, M., Qu, J., & Xu, P. (2006). FEMS Microbiology Letters, 258, 284–289.CrossRefGoogle Scholar
  17. 17.
    Zhang, Q., Tong, M. Y., Li, Y. S., Gao, H. J., & Fang, X. C. (2007). Biotechnology Letters, 29, 123–127.CrossRefGoogle Scholar
  18. 18.
    Davoodi-Dehaghani, F., Vosoughi, M., & Ziaee, A. A. (2001). Bioresource Technology, 101, 1102–1105.CrossRefGoogle Scholar
  19. 19.
    Ohshiro, T., Hirata, T., Hashimoto, I., & Izumi, Y. (1996). Journal of Fermentation and Bioengineering, 82, 610–612.CrossRefGoogle Scholar
  20. 20.
    Li, G. Q., Li, S. S., Qu, S. W., Ma, T., Zhu, L., Liang, F. L., & Liu, R. L. (2008). Biotechnology Letters, 30, 1759–1764.CrossRefGoogle Scholar
  21. 21.
    Naito, M., Kawamoto, T., Fujino, K., Kobayashi, M., Marushashi, K., & Tanaka, A. (2001). Applied Microbiology and Biotechnology, 55, 374–378.CrossRefGoogle Scholar
  22. 22.
    Debabov, V. G. (2010). Applied Biochemistry and Microbiology, 46, 733–738.CrossRefGoogle Scholar
  23. 23.
    Setti, L., Lanzarini, G., & Pifferi, P. G. (1997). Fuel Processing Technology, 52, 145–153.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Danielle Maass
    • 1
  • Débora de Oliveira
    • 1
  • Antônio A. Ulson de Souza
    • 1
  • Selene M. A. Guelli U. Souza
    • 1
    Email author
  1. 1.Chemical and Food Engineering DepartmentFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations