Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2058–2066 | Cite as

Surface Modification of Polyacrylonitrile Fibre by Nitrile Hydratase from Corynebacterium nitrilophilus

  • Sheng Chen
  • Huihui Gao
  • Jian Chen
  • Jing WuEmail author
Article

Abstract

Previously, nitrile hydratase (NHase) from Corynebacterium nitrilophilus was obtained and showed potential in polyacrylonitrile (PAN) fibre modification. In the present study, the modification conditions of C. nitrilophilus NHase on PAN were investigated. In the optimal conditions, the wettability and dyeability (anionic and reactive dyes) of PAN treated by C. nitrilophilus NHase reached a similar level of those treated by alkali. In addition, the chemical composition and microscopically observable were changed in the PAN surface after NHase treatment. Meanwhile, it revealed that cutinase combined with NHase facilitates the PAN hydrolysis slightly because of the ester existed in PAN as co-monomer was hydrolyzed. All these results demonstrated that C. nitrilophilus NHase can modify PAN efficiently without textile structure damage, and this study provides a foundation for the further application of C. nitrilophilus NHase in PAN modification industry.

Keywords

Corynebacterium nitrilophilus Nitrile hydratase Polyacrylonitrile Modification 

Notes

Acknowledgments

This work was supported financially by the Science and Technology Support Project of Jiangsu Province (BE2012018 and BE2012019).

References

  1. 1.
    Araujo, R., Casal, M., & Cavaco-Paulo, A. (2008). Application of enzymes for textile fibres processing. Biocatalysis and Biotransformation, 26, 332–349.CrossRefGoogle Scholar
  2. 2.
    Battistel, E., Morra, M., & Marinetti, M. (2001). Enzymatic surface modification of acrylonitrile fibers. Applied Surface Science, 177, 32–41.CrossRefGoogle Scholar
  3. 3.
    Guebitz, G. M., & Cavaco-Paulo, A. (2008). Enzymes go big: surface hydrolysis and functionalization of synthetic polymers. Trends in Biotechnology, 26, 32–38.CrossRefGoogle Scholar
  4. 4.
    Silva, C., & Cavaco-Paulo, A. (2008). Biotransformations in synthetic fibres. Biocatalysis and Biotransformation, 26, 350–356.CrossRefGoogle Scholar
  5. 5.
    Banerjee, A., Sharma, R., & Banerjee, U. C. (2002). The nitrile-degrading enzymes: current status and future prospects. Applied Microbiology and Biotechnology, 60, 33–44.CrossRefGoogle Scholar
  6. 6.
    Gubitz, G. M., & Paulo, A. C. (2003). New substrates for reliable enzymes: enzymatic modification of polymers. Current Opinion in Biotechnology, 14, 577–582.CrossRefGoogle Scholar
  7. 7.
    Matamá, T., Carneiro, F., Caparrós, C., Gübitz, G. M., & Cavaco-Paulo, A. (2007). Using a nitrilase for the surface modification of acrylic fibres. Biotechnology Journal, 2, 353–360.CrossRefGoogle Scholar
  8. 8.
    Sharma, M., Sharma, N. N., & Bhalla, T. C. (2009). Amidases: versatile enzymes in nature. Reviews in Environmental Science and Biotechnology/Technology, 8, 343–366.CrossRefGoogle Scholar
  9. 9.
    Mitra, S., & Holz, R. C. (2007). Unraveling the catalytic mechanism of nitrile hydratases. Journal of Biological Chemistry, 282, 7397–7404.CrossRefGoogle Scholar
  10. 10.
    Babu, V., Shilpi, & Choudhury, B. (2010). Nitrile-metabolizing potential of Amycolatopsis sp. IITR215. Process Biochemistry, 45, 866–873.CrossRefGoogle Scholar
  11. 11.
    Prepechalova, I., Martinkova, L., Stolz, A., Ovesna, M., Bezouska, K., Kopecky, J., & Kren, V. (2001). Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4. Applied Microbiology and Biotechnology, 55, 150–156.CrossRefGoogle Scholar
  12. 12.
    Song, L., Wang, M., Yang, X., & Qian, S. (2007). Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus sp. AJ270. Biotechnology Journal, 2, 717–724.CrossRefGoogle Scholar
  13. 13.
    Okamoto, S., & Eltis, L. D. (2007). Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Molecular Microbiology, 65, 828–838.CrossRefGoogle Scholar
  14. 14.
    Bandyopadhyay, A. K., Nagasawa, T., Asan, Y., Fujishiro, K., Tani, Y., & Yamada, H. (1982). Aliphatic nitrile hydratase from Arthrobacter sp. J1 purification and characterization. Agricultural and Biological Chemistry, 46, 1165–1174.CrossRefGoogle Scholar
  15. 15.
    Bandyopadhyay, A. K., Nagasawa, T., Asano, Y., Fujishiro, K., Tani, Y., & Yamada, H. (1986). Purification and characterization of benzonitrilases from Arthrobacter sp. strain J-1. Applied and Environmental Microbiology, 51, 302–306.Google Scholar
  16. 16.
    Kim, S., & Oriel, P. (2000). Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme and Microbial Technology, 27, 492–501.CrossRefGoogle Scholar
  17. 17.
    Mayaux, J. F., Cerebelaud, E., Soubrier, F., Faucher, D., & Petre, D. (1990). Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. Journal of Bacteriology, 172, 6764–6773.Google Scholar
  18. 18.
    Raj, J., Prasad, S., & Bhalla, T. C. (2006). Rhodococcus rhodochrous PA-34: a potential biocatalyst for acrylamide synthesis. Process Biochemistry, 41, 1359–1363.CrossRefGoogle Scholar
  19. 19.
    Tauber, M. M., Cavaco-Paulo, A., Robra, K., & Gubitz, G. M. (2000). Nitrile hydratase and amidase from Rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. Applied and Environmental Microbiology, 66, 1634–1638.CrossRefGoogle Scholar
  20. 20.
    Fischer-Colbrie, G., Herrmann, M., Heumann, S., Puolakka, A., Wirth, A., Cavaco-Paulo, A., & Guebitz, G. M. (2006). Surface modification of polyacrylonitrile with nitrile hydratase and amidase from Agrobacterium tumefaciens. Biocatalysis and Biotransformation, 24, 419–425.CrossRefGoogle Scholar
  21. 21.
    Babu, V., & Choudhury, B. (2012). Competitive adsorptions of nitrile hydratase and amidase on polyacrylonitrile and its effect on surface modification. Colloids and Surfaces B: Biointerfaces, 89, 277–282.CrossRefGoogle Scholar
  22. 22.
    Fischer-Colbrie, G., Matama, T., Heumann, S., Martinkova, L., Cavaco Paulo, A., & Guebitz, G. (2007). Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. Journal of Biotechnology, 129, 62–68.CrossRefGoogle Scholar
  23. 23.
    Chen, S., Tong, X., Woodard, R. W., Du, G., Wu, J., & Chen, J. (2008). Identification and characterization of bacterial cutinase. Journal of Biological Chemistry, 283, 25854–25862.CrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Chen, S., Wu, J., & Chen, J. (2012). Enzymatic surface modification of cellulose acetate fiber by cutinase–CBM (carbohydrate-binding module) fusion proteins. Biocatalysis and Biotransformation, 30, 184–189.CrossRefGoogle Scholar
  25. 25.
    Gao, H., Chen, S., Wu, J., & Chen, J. (2011). Fermentation optimization in shake flasks of Corynebacterium nitrilophilus NHase applied in surface modification of polyacrylonitrile fibers. Zhongguo Shengwu Gongcheng Zazhi, 31, 54–60.Google Scholar
  26. 26.
    Prasad, S., & Bhalla, T. C. (2010). Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnology Advances, 28, 725–741.CrossRefGoogle Scholar
  27. 27.
    Cramp, R. A., & Cowan, D. A. (1999). Molecular characterisation of a novel thermophilic nitrile hydratase. Biochimica et Biophysica Acta, 1431, 249–260.CrossRefGoogle Scholar
  28. 28.
    Takashima, Y., Yamaga, Y., & Mitsuda, S. (1998). Nitrile hydratase from a thermophilic Bacillus smithii. Journal of Industrial Microbiology and Biotechnology, 20, 220–226.CrossRefGoogle Scholar
  29. 29.
    Petrillo, K. L., Wu, S., Hann, E. C., Cooling, F. B., Ben-Bassat, A., Gavagan, J. E., DiCosimo, R., & Payne, M. S. (2005). Over-expression in Escherichia coli of a thermally stable and regio-selective nitrile hydratase from Comamonas testosteroni 5-MGAM-4D. Applied Microbiology and Biotechnology, 67, 664–670.CrossRefGoogle Scholar
  30. 30.
    Pereira, R. A., Graham, D., Rainey, F. A., & Cowan, D. A. (1998). A novel thermostable nitrile hydratase. Extremophiles, 2, 347–357.CrossRefGoogle Scholar
  31. 31.
    Liu, J., Yu, H., & Shen, Z. (2008). Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 27, 529–535.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sheng Chen
    • 1
    • 2
  • Huihui Gao
    • 1
    • 2
  • Jian Chen
    • 1
    • 2
  • Jing Wu
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan UniversityWuxiChina

Personalised recommendations