Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2236–2244 | Cite as

Enhanced Dibenzothiophene Biodesulfurization by Immobilized Cells of Brevibacterium lutescens in n-Octane–Water Biphasic System

  • Yong DaiEmail author
  • Rong Shao
  • Gang Qi
  • Bin-Bin Ding
Article

Abstract

In this study, it was the first report that the Brevibacterium lutescens CCZU12-1 was employed as a sulfur removing bacteria. Using dibenzothiophene (DBT) as the sole sulfur source, B. lutescens could selectively degrade DBT into 2-hydroxybiphenyl (2-HBP) via the “4S” pathway. In the basal salt medium (BSM) supplemented with 0.25 mM DBT and 0.5 g/L Tween-80, high desulfurization rate (100 %) was obtained by growth cells after 60 h. Furthermore, the n-octane–water (10:90, v/v) biphasic system was built for the biodesulfurization by resting cells. Moreover, a combination of magnetic nano Fe3O4 particles with calcium alginate immobilization was used for enhancing biodesulfurization. In this n-octane–water biphasic system, immobilized B. lutescens cells could be reused for not less than four times. Therefore, B. lutescens CCZU12-1 shows high potential in the biodesulfurization.

Keywords

Biodesulfurization Biphasic system Brevibacterium lutescens Dibenzothiophene 2-Hydroxybiphenyl Immobilization 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21102011), the Natural Science Fund for Colleges and Universities in Jiangsu Province (13KJB430025), the Environmental Protection Scientific Research in Jiangsu Province (2013004), the Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201118), and the Industrial Technology Support Project in Yancheng City (2013).

References

  1. 1.
    Wang, Z., & Stout, S. (2007) Elsevier/Academic Press, Amsterdam; Boston, MA.Google Scholar
  2. 2.
    Zhang, T., Li, W. L., Chen, X. X., Tang, H., Li, Q., Xing, J. M., & Liu, H. Z. (2011). World Journal of Microbiology and Biotechnology, 27, 299–305.CrossRefGoogle Scholar
  3. 3.
    Teixeira, A. V., Paixão, S. M., da Silva, T. L., & Alves, L. (2014). Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-014-0902-6.Google Scholar
  4. 4.
    Alves, L., Salgueiro, R., Rodrigues, C., Mesquita, E., Matos, J., & Gärio, F. M. (2005). Applied Biochemistry and Biotechnology, 120, 199–208.CrossRefGoogle Scholar
  5. 5.
    Li, Y. G., Xing, J. M., Xiong, X. C., Li, W. L., Gao, H. S., & Liu, H. Z. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 145–150.CrossRefGoogle Scholar
  6. 6.
    Yu, B., Xu, P., Shi, Q., & Ma, C. (2006). Applied and Environmental Microbiology, 72, 54–58.CrossRefGoogle Scholar
  7. 7.
    Alves, L., & Paixão, S. M. (2014). Applied Biochemistry and Biotechnology, 172, 3297–3305.CrossRefGoogle Scholar
  8. 8.
    Jiang, X., Yang, S. L., & Li, W. L. (2014). Applied Biochemistry and Biotechnology, 172, 62–72.CrossRefGoogle Scholar
  9. 9.
    Bardania, H., Raheb, J., Mohammad-Beigi, H., Rasekh, B., & Arpanaei, A. (2013). Biotechnology and Applied Biochemistry, 60(3), 323–329.CrossRefGoogle Scholar
  10. 10.
    Constanti, M., Giralt, J., & Bordons, A. (1996). Enzyme and Microbial Technology, 19, 214–219.CrossRefGoogle Scholar
  11. 11.
    Gilbert, S. C., Morton, J., Buchanan, S., Oldfield, C., & McRoberts, A. (1998). Microbiology, 144, 2545–2553.CrossRefGoogle Scholar
  12. 12.
    Konishi, J., Onaka, T., Ishii, Y., & Suzuki, M. (2000). FEMS Microbiology Letters, 187, 151–154.CrossRefGoogle Scholar
  13. 13.
    Tanaka, Y., Onaka, T., Matsui, T., Maruhashi, K., & Kurane, R. (2001). Current Microbiology, 43, 187–191.CrossRefGoogle Scholar
  14. 14.
    Izumi, Y., Ohshiro, T., Ogino, H., Hine, Y., & Shimao, M. (1994). Applied and Environmental Microbiology, 60, 223–226.Google Scholar
  15. 15.
    He, Y. C., Ma, C. L., Yang, Z. X., Zhou, M., Xing, Z., Ma, J. T., & Yu, H. L. (2013). Applied Microbiology and Biotechnology, 97, 10329–10337.CrossRefGoogle Scholar
  16. 16.
    He, Y. C., Zhou, Q., Ma, C. L., Cai, Z. Q., Wang, L. Q., Zhao, X. Y., Chen, Q., Gao, D. Z., Zheng, M., Wang, X. D., & Sun, Q. (2012). Bioresource Technology, 115, 88–95.CrossRefGoogle Scholar
  17. 17.
    Dinamarca, M. A., Rojas, A., Baeza, P., Espinoza, G., Ibacache-Quiroga, C., & Ojeda, J. (2014). Fuel, 16, 237–241.CrossRefGoogle Scholar
  18. 18.
    Gunam, I. B., Yamamura, K., Sujaya, I. N., Antara, N. S., Aryanta, W. R., Tanaka, M., Tomita, F., Sone, T., & Asano, K. (2013). Journal of Microbiology and Biotechnology, 23(4), 473–482.CrossRefGoogle Scholar
  19. 19.
    Bardania, H., Raheb, J., Mohammad-Beigi, H., Rasekh, B., & Arpanaei, A. (2013). Biotechnology and Applied Biochemistry, 60(3), 323–329.CrossRefGoogle Scholar
  20. 20.
    Gunam, I. B., Yamamura, K., Sujaya, I. N., Antara, N. S., Aryanta, W. R., Tanaka, M., Tomita, F., Sone, T., & Asano, K. (2013). Journal of Microbiology and Biotechnology, 23(4), 473–482.CrossRefGoogle Scholar
  21. 21.
    Li, Y. G., Gao, H. S., Li, W. L., Xing, J. M., & Liu, H. Z. (2009). Bioresource Technology, 100(21), 5092–5096.CrossRefGoogle Scholar
  22. 22.
    Li, F., Xu, P., Feng, J., Meng, L., Zheng, Y., Luo, L., & Ma, C. (2005). Applied and Environmental Microbiology, 71(1), 276–281.CrossRefGoogle Scholar
  23. 23.
    Wu, S., Lin, J., & Chan, S. I. (1994). Applied Biochemistry and Biotechnology, 47(1), 11–20.CrossRefGoogle Scholar
  24. 24.
    He, Y. C., Ma, C. L., Zhang, X., Li, L., Xu, J. H., & Wu, M. X. (2013). Applied Microbiology and Biotechnology, 97, 7185–7194.CrossRefGoogle Scholar
  25. 25.
    Ohshiro, T., Hirata, T., & Izumi, Y. (1996). FEMS Microbiology Letters, 142, 65–70.CrossRefGoogle Scholar
  26. 26.
    Tao, F., Yu, B., & Xu, P. (2006). Applied and Environmental Microbiology, 72, 4604–4609.CrossRefGoogle Scholar
  27. 27.
    He, Y. C., Xu, J. H., Su, J. H., & Zhou, L. (2010). Applied Biochemistry and Biotechnology, 160, 1428–1440.CrossRefGoogle Scholar
  28. 28.
    Ngo-Thi, M. T., Yin, J. G., Pan, J., Zheng, G. W., & Xu, J. H. (2013). Applied Biochemistry and Biotechnology, 170, 1974–1981.CrossRefGoogle Scholar
  29. 29.
    He, Y. C., Pan, X. H., Xu, X. F., & Wang, L. Q. (2014). Applied Biochemistry and Biotechnology, 172, 3223–3233.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Chemical and Biological EngineeringYancheng Institute of TechnologyYanchengPeople’s Republic of China

Personalised recommendations