Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2048–2057 | Cite as

Production and Characterization of a Novel Yeast Extracellular Invertase Activity Towards Improved Dibenzothiophene Biodesulfurization

  • Bruno F. Arez
  • Luís AlvesEmail author
  • Susana M. PaixãoEmail author


The main goal of this work was the production and characterization of a novel invertase activity from Zygosaccharomyces bailii strain Talf1 for further application to biodesulfurization (BDS) in order to expand the exploitable alternative carbon sources to renewable sucrose-rich feedstock. The maximum invertase activity (163 U ml−1) was achieved after 7 days of Z. bailii strain Talf1 cultivation at pH 5.5–6.0, 25 °C, and 150 rpm in Yeast Malt Broth with 25 % Jerusalem artichoke pulp as inducer substrate. The optimum pH and temperature for the crude enzyme activity were 5.5 and 50 °C, respectively, and moreover, high stability was observed at 30 °C for pH 5.5–6.5. The application of Talf1 crude invertase extract (1 %) to a BDS process by Gordonia alkanivorans strain 1B at 30 °C and pH 7.5 was carried out through a simultaneous saccharification and fermentation (SSF) approach in which 10 g l−1 sucrose and 250 μM dibenzothiophene were used as sole carbon and sulfur sources, respectively. Growth and desulfurization profiles were evaluated and compared with those of BDS without invertase addition. Despite its lower stability at pH 7.5 (loss of activity within 24 h), Talf1 invertase was able to catalyze the full hydrolysis of 10 g l−1 sucrose in culture medium into invert sugar, contributing to a faster uptake of the monosaccharides by strain 1B during BDS. In SSF approach, the desulfurizing bacterium increased its μmax from 0.035 to 0.070 h−1 and attained a 2-hydroxybiphenyl productivity of 5.80 μM/h in about 3 days instead of 7 days, corresponding to an improvement of 2.6-fold in relation to the productivity obtained in BDS process without invertase addition.


Invertase activity Zygosaccharomyces bailii strain Talf1 Biodesulfurization Gordonia alkanivorans strain 1B SSF Dibenzothiophene 



The present work was financed by FEDER funds through POFC-COMPETE and by national funds through Fundação para a Ciência e a Tecnologia (FCT) in the scope of the project Carbon4Desulf–FCOMP-01-0124-FEDER-013932 (Ex–PTDC/AAC-AMB/112841/2009).


  1. 1.
    Kampa, M., & Castanas, E. (2008). Environmental Pollution, 151, 362–367.CrossRefGoogle Scholar
  2. 2.
    Borgne, S., & Quintero, R. (2003). Fuel Processing Technology, 81, 155–169.CrossRefGoogle Scholar
  3. 3.
    Yang, J., & Marison, I. W. (2005). Biochemical Engineering Journal, 27, 77–82.CrossRefGoogle Scholar
  4. 4.
    Kaufman, E. N., Borole, A. P., Shong, R., Sides, J. L., & Juengst, C. (1999). Journal of Chemical Technology and Biotechnology, 74, 1000–1004.CrossRefGoogle Scholar
  5. 5.
    Xu, P., Li, F. L., Yu, J., Ma, C. Q., Zhong, J. J., Qu, Y. B., & Blankespoor, H. D. (2002). Chinese Science Bulletin, 47, 365–369.CrossRefGoogle Scholar
  6. 6.
    Alves, L., Salgueiro, R., Rodrigues, C., Mesquita, E., Matos, J., & Girio, F. M. (2005). Applied Biochemistry and Biotechnology, 120, 199–208.CrossRefGoogle Scholar
  7. 7.
    Alves, L., Marques, S., Matos, J., Tenreiro, R., & Girio, F. M. (2008). Chemosphere, 70, 967–973.CrossRefGoogle Scholar
  8. 8.
    Silva, T. P., Paixão, S. M., Teixeira, A. V., Roseiro, J. C., & Alves, L. (2013). Journal of Chemical Technology and Biotechnology, 88, 919–923.CrossRefGoogle Scholar
  9. 9.
    Alves, L., & Paixão, S. M. (2014). New Biotechnology, 31, 73–79.CrossRefGoogle Scholar
  10. 10.
    Aranda, C., Robledo, A., Loera, O., Juan, C., Esquivel, C., Rodriguez, R., & Aguillar, C. N. (2006). Food Technology and Biotechnology, 44, 229–233.Google Scholar
  11. 11.
    Vrábel, P., Polakovic, M., Stefuca, V., & Bales, V. (1997). Enzyme and Microbial Technology, 20, 348–354.CrossRefGoogle Scholar
  12. 12.
    Kadowaki, M.K., Simão, R.C.G., Silva, J.L.C., Osaku, C.A., & Guimarães, L.H.S. (2013). In: Polizeli, M.L., & Rai, M., editors. Fungal enzymes, CRC press: Taylor & Francis Group; p. 1–30.Google Scholar
  13. 13.
    Paixão, S. M., Teixeira, P. D., Silva, T. P., Teixeira, A. V., & Alves, L. (2013). New Biotechnology, 30, 598–606.CrossRefGoogle Scholar
  14. 14.
    Guiraud, J. P. (1981). Doctoral thesis. France: University of Montpellier.Google Scholar
  15. 15.
    Kango, N., & Jain, S. C. (2011). Food Biotechnology, 25, 165–212.CrossRefGoogle Scholar
  16. 16.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  17. 17.
    Eijsink, V. G. H., Gåseidnes, S., Borchert, T. V., & van den Burg, B. (2005). Biomolecular Engineering, 22, 21–30.CrossRefGoogle Scholar
  18. 18.
    Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Applied Microbiology and Biotechnology, 82, 211–220.CrossRefGoogle Scholar
  19. 19.
    Sudha (2012). Research in Biotechnology, 3, 67–71.Google Scholar
  20. 20.
    Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.CrossRefGoogle Scholar
  21. 21.
    Iyer, P. V., & Ananthanarayan, L. (2008). Process Biochemistry, 43, 1019–1032.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.LNEG - Laboratório Nacional de Energia e GeologiaUnidade de BioenergiaLisbonPortugal

Personalised recommendations