Skip to main content
Log in

Evidence of a New Intermediate Compound of the Chitin Biogenesis Found in a Marine-Derived Fungus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The chemical screening of the biomass of a new marine-derived strain of Penicillium roqueforti, produced by liquid-state fermentation, led to the identification of several volatile and nonvolatile compounds. As a result of previous studies, we have isolated and characterized a new molecule. The chemical structure of 2-deoxy-2-phosphamino-α-D-glucopyranose isolated was elucidated on the basis of 1D and 2D NMR studies together with other instrumental techniques. As a result of this discovery, a biogenetic route has been proposed to explain its formation as an intermediary component of the chitin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aishahi, A., & Aïder, M. (2012). Food and Bioprocess Technology, 5, 817–830.

    Article  Google Scholar 

  2. George, T. S., et al. (2011). World Journal of Science and Technology, 1, 43–48.

    CAS  Google Scholar 

  3. Jayakumar, R., et al. (2010). Carbohydrate Polymers, 82, 227–232.

    Article  CAS  Google Scholar 

  4. Nwe, N., et al. (2011). Carbohydrate Polymers, 84, 743–750.

    Article  CAS  Google Scholar 

  5. Chao, C.-F., et al. (2013). Carbohydrate Polymers, 93, 615–621.

    Article  CAS  Google Scholar 

  6. Pareek, N., et al. (2012). Carbohydrate Polymers, 87, 1091–1097.

    Article  CAS  Google Scholar 

  7. Skorik, Y. A., Pestov, A. V., & Yatluk, Y. G. (2010). Bioresource Technology, 101, 1769–1775.

    Article  CAS  Google Scholar 

  8. Synytsya, A., & Novák, M. (2013). Carbohydrate Polymers, 92, 792–809.

    Article  CAS  Google Scholar 

  9. Gooday, G. W. (1977). Journal of General Microbiology, 99, 1–11.

    Article  CAS  Google Scholar 

  10. Rast, D. M., et al. (2003). Phytochemistry, 64, 339–366.

    Article  CAS  Google Scholar 

  11. Latge, J. P. (2007). Molecular Microbiology, 66, 279–290.

    Article  CAS  Google Scholar 

  12. Nwe, N., & Stevens, W. F. (2008). In Tamura, H. (Ed.), Recent research in biomedical aspects of chitin and chitosan (pp. 161–176). India, Research Signpost.

  13. Lenardon, M. D., Munro, C. A., & Gow, N. A. R. (2010). Current Opinion in Microbiology, 13, 416–423.

    Article  CAS  Google Scholar 

  14. Bulik, D. A., et al. (2003). Eukaryotic Cell, 29, 886–900.

    Article  Google Scholar 

  15. Cabib, E., et al. (1989). Journal of Cell Biology, 108, 1665–1672.

    Article  CAS  Google Scholar 

  16. Glazer, L., & Brown, D. H. (1957). Journal of Biological Chemistry, 228, 729–742.

    Google Scholar 

  17. Hartl, L., Zach, S., & Seidl-Seiboth, V. (2012). Applied Microbiology and Biotechnology, 93, 533–543.

    Article  CAS  Google Scholar 

  18. Roncero, R. (2002). Current Genetics, 41, 367–378.

    Article  CAS  Google Scholar 

  19. Chitnis, M. V., et al. (2002). Fungal Genetics and Biology, 36, 215–223.

    Article  CAS  Google Scholar 

  20. Gandía, M., Harries, E., & Marcos, J. F. (2012). Fungal Biology, 116, 654–664.

    Article  Google Scholar 

  21. Namgung, J., et al. (1996). FEMS Microbiology Letters, 145, 71–76.

    Article  CAS  Google Scholar 

  22. Mioso, R., et al. (2014). Quim Nova, 37, 260–267.

    CAS  Google Scholar 

  23. Seymour, R. L. & Fuller, M. S. (1987). In Fuller, M. S., Jaworowski, A. (Eds.). Zoosporic fungi in teaching and research (pp. 125–127). Athens, Southwestern Publishing.

  24. Van der Veen, J. M. (1963). Journal of Organic Chemistry, 28, 564–566.

    Article  Google Scholar 

  25. Bock, K., & Pedersen, C. (1974). Journal of the Chemical Society, Perkin Transactions, 2, 293–297.

    Article  Google Scholar 

  26. Walker, T. E., et al. (1978). Carbohydrate Research, 60, 9–18.

    Article  CAS  Google Scholar 

  27. Hall, C. R., et al. (1983). Journal of the Chemical Society, Perkin Transactions, 1, 1067–1075.

    Google Scholar 

  28. Applegarth, D. A. (1966). Nature, 5060, 434–435.

    Article  Google Scholar 

  29. Applegarth, D. A., & Bozoian, G. (1968). Canadian Journal of Microbiology, 14, 489–490.

    Article  CAS  Google Scholar 

  30. Inoue, Y., & Nagasawa, K. J. (1973). Organic Chemistry, 38, 1810–1813.

    Article  CAS  Google Scholar 

  31. Kamerling, J. P., et al. (1988). FEBS Letters, 241, 246–250.

    Article  CAS  Google Scholar 

  32. Lloyd, A. G., et al. (1964). Biochemical Journal, 92, 68–72.

    Google Scholar 

  33. Archbald, P. J., Fenn, M. D., & Roy, A. B. (1981). Carbohydrate Research, 93, 177–190.

    Article  CAS  Google Scholar 

  34. Bulman, R. A., & Chittenden, G. J. F. (1976). Biochimica et Biophysica Acta, 444, 202–211.

    Article  CAS  Google Scholar 

  35. Costa Maia, J. C. (1994). FASEB Journal, 8, 848–853.

    CAS  Google Scholar 

  36. Fleck, C. B., & Brock, M. (2010). Eukaryotic Cell, 9, 1120–1135.

    Article  CAS  Google Scholar 

  37. Jolly, L., et al. (2000). Journal of Bacteriology, 182, 1280–1285.

    Article  CAS  Google Scholar 

  38. Boles, E., Liebentrau, W., Hoffmann, M., & Zimmermann, F. K. (1994). European Journal of Biochemistry, 220, 83–96.

    Article  CAS  Google Scholar 

  39. Mengin-Lecreulx, D., & van Heijenoort, J. (1993). Journal of Bacteriology, 175, 6150–6157.

    CAS  Google Scholar 

  40. Mengin-Lecreulx, D., & van Heijenoort, J. (1994). Journal of Bacteriology, 176, 5788–5795.

    CAS  Google Scholar 

  41. Milewski, S., Gabriel, I., & Olchowy, J. (2006). Yeast, 23, 1–14.

    Article  CAS  Google Scholar 

  42. Trempe, J. F., et al. (2011). Protein Science, 20, 745–752.

    Article  CAS  Google Scholar 

  43. Kupchan, S. M., et al. (1973). Journal of Organic Chemistry, 38, 178–179.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior agency (CAPES, Brazil) for the Ph.D. fellowship and the European Commission for a Marie Curie Training Site Fellowship, both granted to R.M. Grateful acknowledgement is made of the financial support given to the project SI-697 (ULPAPD-08/01-5) by the Canary government (Agencia Canaria de Investigación, Innovación y Sociedad de la Información, ACIISI) and the Instituto Canario de Investigación del Cáncer (ICIC). This work was co-funded by research grants from the Spanish MICINN, Ref. No. BIO2011-29233-C02-02 and Agencia Canaria de Investigación, Innovación y Sociedad de la Información, Ref. No. PIL2071001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Herrera Bravo de Laguna.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toledo Marante, F.J., Herrera Bravo de Laguna, I., Torres, N.V. et al. Evidence of a New Intermediate Compound of the Chitin Biogenesis Found in a Marine-Derived Fungus. Appl Biochem Biotechnol 174, 2426–2434 (2014). https://doi.org/10.1007/s12010-014-1180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1180-z

Keywords

Navigation