Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 926–935 | Cite as

Chitosan-Modified Carbon Nanotubes-Based Platform for Low-Density Lipoprotein Detection

  • Md. Azahar Ali
  • Nawab Singh
  • Saurabh Srivastava
  • Ved V. AgrawalEmail author
  • Renu JohnEmail author
  • M. Onoda
  • Bansi D. MalhotraEmail author
Article

Abstract

We have fabricated an immunosensor based on carbon nanotubes and chitosan (CNT-CH) composite for detection of low density lipoprotein (LDL) molecules via electrochemical impedance technique. The CNT-CH composite deposited on indium tin oxide (ITO)-coated glass electrode has been used to covalently interact with anti-apolipoprotein B (antibody: AAB) via a co-entrapment method. The biofunctionalization of AAB on carboxylated CNT-CH surface has been confirmed by Fourier transform infrared spectroscopic and electron microscopic studies. The covalent functionalization of antibody on transducer surface reveals higher stability and reproducibility of the fabricated immunosensor. Electrochemical properties of the AAB/CNT-CH/ITO electrode have been investigated using cyclic voltammetric and impedimetric techniques. The impedimetric response of the AAB/CNT-CH/ITO immunoelectrode shows a high sensitivity of 0.953 Ω/(mg/dL)/cm2 in a detection range of 0–120 mg/dL and low detection limit of 12.5 mg/dL with a regression coefficient of 0.996. The observed low value of association constant (0.34 M–1s–1) indicates high affinity of AAB/CNT-CH/ITO immunoelectrode towards LDL molecules. This fabricated immunosensor allows quantitative estimation of LDL concentration with distinguishable variation in the impedance signal.

Keywords

Low density lipoprotein Impedance spectroscopy Carbon nanotubes Chitosan Nanocomposite 

Notes

Acknowledgments

The authors thank Director NPL, New Delhi, India, for the facilities. Md. Azahar Ali is thankful to CSIR, India for the award of Senior Research Fellowship. V. V. A. is thankful to TSDP-DST and CSIR empower project for funding. The financial support received from Department of Science and Technology, India (grant no. DST/TSG/ME/2008/18) and Indian Council of Medical Research, India (grant no. ICMR/5/3/8/91/GM/2010-RHN) is gratefully acknowledged.

References

  1. 1.
    Sinha, N., & Yeow, J. T.-W. (2005). Carbon nanotubes for biomedical applications. IEEE Transaction Nanbioscience, 4, 180–195.CrossRefGoogle Scholar
  2. 2.
    Yang, W., Thordarson, P., Gooding, J. J., et al. (2007). Carbon nanotubes for biological and biomedical applications. Nanotechnology, 18, 412001.CrossRefGoogle Scholar
  3. 3.
    Lin, Y., Lu, F., Tu, Y., et al. (2004). Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 4, 191–195.CrossRefGoogle Scholar
  4. 4.
    Wang, J., & Lin, Y. (2008). Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends in Analytical Chemistry, 27, 619–626.CrossRefGoogle Scholar
  5. 5.
    Zhu, H., Wei, J., Wang, K., et al. (2009). Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials & Solar Cells, 93, 1461–1470.CrossRefGoogle Scholar
  6. 6.
    Balasubramanian, K., & Burghard, M. (2008). Electrochemically functionalized carbon nanotubes for device applications. Journal of Materials Chemistry, 18, 3071–3083.CrossRefGoogle Scholar
  7. 7.
    Daniel, S., Rao, T. P., Rao, K. S., et al. (2007). A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sensors and Actuators B, 122, 672–682.CrossRefGoogle Scholar
  8. 8.
    Das, M., Dhand, C., Sumana, G., et al. (2012). Electrophoretically fabricated core-shell CNT-DNA biowires for biosensing. Journal of Materials Chemistry, 22, 2727–2732.CrossRefGoogle Scholar
  9. 9.
    Vaisman, L., Wagner, H. D., & Marom, G. (2006). The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, 128–130, 37–46.CrossRefGoogle Scholar
  10. 10.
    Li, J., Liu, Q., Liu, Y., et al. (2005). DNA biosensor based on chitosan film doped with carbon nanotubes. Analytical Biochemistry, 346, 107–114.CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Tang, J., Chen, X., et al. (2005). Decoration of carbon nanotubes with chitosan. Carbon, 43, 3178–3180.CrossRefGoogle Scholar
  12. 12.
    Wu, Z., Feng, W., Feng, Y., et al. (2007). Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon, 45, 1212–1218.CrossRefGoogle Scholar
  13. 13.
    Spinks, G. M., Shin, S. R., Wallace, G. G., et al. (2006). Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sensors and Actuators B, 115, 678–684.CrossRefGoogle Scholar
  14. 14.
    Tsai, Y.-C., Chen, S.-Y., Liaw, & H.-W., (2007). Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sensors and Actuators B, 125, 474–481.Google Scholar
  15. 15.
    Cao, X., Dong, H., Ming, C., et al. (2009). The enhanced mechanical properties of a covalently bound chitosan-multiwalled carbon nanotube nanocomposite. Journal of Applied Polymer Science, 113, 466–472.CrossRefGoogle Scholar
  16. 16.
    Luo, X.-L., Xu, J.-J., Wang, J.-L., et al. (2005). Electrochemically deposited nanocomposite nanotubes for biosensor application. Chemical Communications, 2169–2171.Google Scholar
  17. 17.
    Qiu, J.-D., Xie, H.-Y., & Liang, R.-P. (2008). Preparation of porous chitosan/carbon nanotubes film modified electrode for biosensor application. Microchimica Acta, 162, 57–64.CrossRefGoogle Scholar
  18. 18.
    Hao, C., Ding, L., & Zhang, X. (2007). Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Analytical Chemistry, 79, 4442–4447.CrossRefGoogle Scholar
  19. 19.
    Ali, M.A., Srivastava, S., Solanki, P.R. (2013). Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application. Scientific Reports, 3(1–9), 2661.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Science and Technology Centre on Biomolecular ElectronicsCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Indian Institute of Technology Hyderabad, Ordnance Factory EstateHyderabadIndia
  3. 3.Department of Electrical Engineering and Computer SciencesUniversity of HyogoHimejiJapan
  4. 4.Department of BiotechnologyDelhi Technological UniversityDelhiIndia

Personalised recommendations