Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2209–2222 | Cite as

Enhanced Production of Artemisinin by Hairy Root Cultivation of Artemisia annua in a Modified Stirred Tank Reactor

  • Nivedita Patra
  • Ashok K. SrivastavaEmail author


Artemisinin is an important drug commonly used in the treatment of malaria as a combination therapy. It is primarily produced by a plant Artemisia annua, however, its supply from plant is significantly lower than its huge demand and therefore alternative in vitro production routes are sought. Hairy root cultivation could be one such alternative production protocol. Agrobacterium rhizogenes was used to induce hairy roots of A. annua. Statistical optimization of media was thereafter attempted to maximize the biomass/artemisinin production. The growth and product formation kinetics and the significant role of O2 in hairy root propagation were established in optimized media. Mass cultivation of hairy roots was, thereafter, attempted in a modified 3-L Stirred Tank Bioreactor (Applikon Dependable Instruments, The Netherlands) using optimized culture conditions. The reactor was suitably modified to obtain profuse growth of hairy roots by segregating and protecting the growing roots from the agitator rotation in the reactor using a perforated Teflon disk. It was possible to produce 18 g biomass L−1 (on dry weight basis) and 4.63 mg L−1 of artemisinin in 28 days, which increased to 10.33 mg L−1 by the addition of elicitor methyl jasmonate.


Artemisia annua Artemisinin Plant cell bioreactors Growth kinetics Oxygen transfer Metabolite over production 



The authors thankfully acknowledge the supply of elite seed material supply from CIMAP Lucknow. The financial support by Ministry of Human Resource Development, New Delhi (India) for the execution of the above project is gratefully acknowledged by one of the authors (Ms. Nivedita Patra).


  1. 1.
    Delabays, N., Simonnet, X., & Gaudin, M. (2001). Current Medicinal Chemistry, 8, 1795–1801.CrossRefGoogle Scholar
  2. 2.
    Jaziri, M., Shimomura, K., Yoshimatsu, K., Fauconnier, M. L., Marlier, M., & Homes, J. (1995). Journal of Plant Physiology, 145, 175–177.CrossRefGoogle Scholar
  3. 3.
    Srivastava, S., & Srivastava, A. K. (2007). Critical Reviews in Biotechnology, 27, 29–43.CrossRefGoogle Scholar
  4. 4.
    Weathers, P. J., Cheetham, R. D., Follansbee, E., & Teoh, K. (1994). Biotechnology Letters, 16, 1281–1286.Google Scholar
  5. 5.
    Kim, Y., Wyslouzil, B. E., & Weathers, P. J. (2001). Plant Cell Reports, 20, 451–455.CrossRefGoogle Scholar
  6. 6.
    Kim, Y. J., Weathers, P. J., & Wyslouzil, B. E. (2003). Biotechnology and Bioengineering, 83, 428–443.CrossRefGoogle Scholar
  7. 7.
    Xie, D. Y., Wang, L. H., Ye, H. C., & Li, G. F. (2000). Plant Cell Tissue Organ, 63, 161–166.CrossRefGoogle Scholar
  8. 8.
    Liu, C. Z., Wang, Y. C., Ouyang, F., Ye, H. C., & Li, G. F. (1998). Biotechnology Letters, 20, 265–268.CrossRefGoogle Scholar
  9. 9.
    Kim, Y. J., Weathers, P. J., & Wyslouzil, B. E. (2002). Biotechnology and Bioengineering, 80, 454–464.CrossRefGoogle Scholar
  10. 10.
    Liu, C. Z., Wang, Y. C., Ouyang, F., Ye, H. C., & Li, G. F. (1997). Biotechnology Letters, 19, 927–929.CrossRefGoogle Scholar
  11. 11.
    Wilson, P. D. G., Hilton, M. G., Robins, R. J., & Rhodes, M. J. C. (1987). In G. W. Moody & P. B. Baker (Eds.), International conference on bioreactors and biotransformations (pp. 38–51). London: Elsevier.Google Scholar
  12. 12.
    Taya, M., Yoyama, A., Kondo, O., Kobayashi, T., & Matsui, C. (1989). Journal of Chemical Engineering of Japan, 22, 84–89.CrossRefGoogle Scholar
  13. 13.
    Hilton, M. G., & Rhodes, M. J. (1990). Applied Microbiology and Biotechnology, 33, 132–138.CrossRefGoogle Scholar
  14. 14.
    Prakash, G., & Srivastava, A. K. (2007). Process Biochemistry, 42, 93–97.CrossRefGoogle Scholar
  15. 15.
    Putalun, W., Luealon, W., De-Eknamkul, W., Tanaka, H., & Shoyama, Y. (2007). Biotechnology Letters, 29, 1143–1146.CrossRefGoogle Scholar
  16. 16.
    Patra, N., Srivastava, A. K., & Sharma, S. (2013). International Journal of Chemical Engineering Applications, 4, 157–160.CrossRefGoogle Scholar
  17. 17.
    Patra, N., Sharma, S., & Srivastava, A. K. (2011). In M. M. Srivastava, L. D. Khemani, & S. Srivastava (Eds.), Chemistry of phytopotentials: health energy and environment perspectives (pp. 173–176). Heidelberg: Springer-Verlag.Google Scholar
  18. 18.
    Smith, T. C., Weathers, P. J., & Cheetham, R. O. (1997). In Vitro Cellular and Developmental, 33, 75–79.CrossRefGoogle Scholar
  19. 19.
    Weathers, P. J., Wyslouzil, B. E., Wobbe, K. K., Kim, Y. J., & Yigit, E. (1999). In Vitro Cellular and Developmental, 35, 286–289.CrossRefGoogle Scholar
  20. 20.
    Dubois, M., Gilf, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  21. 21.
    Cataldo, D. A., Haroon, M., Schrader, L. E., & Youngs, V. L. (1975). Communications in Soil Science and Plant, 6, 71–80.CrossRefGoogle Scholar
  22. 22.
    Brunner, I., Brodbeck, S., & Walthert, L. (2002). Forest Ecology and Management, 165, 75–84.CrossRefGoogle Scholar
  23. 23.
    Murphy, J., & Riley, J. P. (1962). Analytica Chimica Acta, 27, 31–36.CrossRefGoogle Scholar
  24. 24.
    Miller, G. H. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  25. 25.
    Atkinson, N. J., Newbury, H. J., & Fordlloyd, B. V. (1991). Plant Cell Tissue Organ, 27, 77–79.CrossRefGoogle Scholar
  26. 26.
    Srivastava, S., & Srivastava, A. K. (2012). Applied Biochemistry and Biotechnology, 167, 1818–1830.CrossRefGoogle Scholar
  27. 27.
    Freshney, R. I. (2000). Culture of animal cells: a manual of basic technique (4th ed.). New York: Wiley.Google Scholar
  28. 28.
    Smeekens, S. (2000). Annual Review of Plant Physiology, 51, 49–81.CrossRefGoogle Scholar
  29. 29.
    Weathers, P. J., DeJesus, L., Kim, Y. J., Souret, F. F., & Towler, M. (2004). In Vitro Cellular and Developmental Biology - Animal, 40, 64a.Google Scholar
  30. 30.
    Larronde, F., Krisa, S., Decendit, A., Cheze, C., & Merillon, J. M. (1998). Plant Cell Reports, 17, 946–950.CrossRefGoogle Scholar
  31. 31.
    Pannuri, S., Reddy, G. R., Mcneill, D., & Curtis, W. R. (1993). Applied Microbiology and Biotechnology, 38, 550–555.CrossRefGoogle Scholar
  32. 32.
    Wyslouzil, B. E., Whipple, M., Chatterjee, C., Walcerz, D. B., Weathers, P. J., & Hart, D. P. (1997). Biotechnology Progress, 13, 185–194.CrossRefGoogle Scholar
  33. 33.
    Liu, C. Z., Wang, Y. C., Zhao, B., Guo, C., Ouyang, F., Ye, H. C., & Li, G. F. (1999). In Vitro Cellular and Developmental, 35, 271–274.CrossRefGoogle Scholar
  34. 34.
    Sivakumar, G., Liu, C., Towler, M. J., & Weathers, P. J. (2010). Biotechnology and Bioengineering, 107, 802–813.CrossRefGoogle Scholar
  35. 35.
    Zhang, B., Zou, T., Lu, Y. H., & Wang, J. W. (2010). African Journal of Biotechnology, 9, 3437–3442.Google Scholar
  36. 36.
    Souret, F. F., Kim, Y., Wyslouzil, B. E., Wobbe, K. K., & Weathers, P. J. (2003). Biotechnology and Bioengineering, 83, 653–667.CrossRefGoogle Scholar
  37. 37.
    Mehrotra, S., Kukreja, A. K., Khanuja, S. P. S., & Mishra, B. N. (2008) Electron J Biotechnol 11Google Scholar
  38. 38.
    Liu, C., Wang, Y., Guo, C., Ouyang, F., Ye, H., & Li, G. (1998). Bioprocess Engineering, 19, 389–392.Google Scholar
  39. 39.
    Uozumi, N., Kohketsu, K., & Kobayashi, T. (1993). Journal of Chemical Technology and Biotechnology, 57, 155–161.CrossRefGoogle Scholar
  40. 40.
    Srivastava, S., & Srivastava, A. K. (2012). Bioprocess and Biosystems Engineering, 35, 1549–1553.CrossRefGoogle Scholar
  41. 41.
    Chen, D. H., Liu, C. J., Ye, H. C., Li, G. F., Liu, B. Y., Men, Y. L., & Chen, X. Y. (1999). Plant Cell Tissue Organ, 57, 157–162.CrossRefGoogle Scholar
  42. 42.
    Lu, X., Lin, X. Y., Shen, Q. A., Zhang, F. Y., Wang, Y. Y., Chen, Y. F., Wang, T., Wu, S. Y., & Tang, K. X. (2011). Plant Molecular Biology Reporter, 29, 489–497.CrossRefGoogle Scholar
  43. 43.
    Pu, G. B., Ma, D. M., Chen, J. L., Ma, L. Q., Wang, H., Li, G. F., Ye, H. C., & Liu, B. Y. (2009). Plant Cell Reports, 28, 1127–1135.CrossRefGoogle Scholar
  44. 44.
    Caretto, S., Quarta, A., Durante, M., Nisi, R., De Paolis, A., Blando, F., & Mita, G. (2011). Plant Biology (Stuttgart, Germany), 13, 51–58.CrossRefGoogle Scholar
  45. 45.
    Yu, K., Gao, W., Hahn, E., & Paek, K. Y. (2002). Biochemical Engineering Journal, 11, 211–215.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Department of Biotechnology and Medical EngineeringNational Institute of Technology RourkelaOdishaIndia

Personalised recommendations