Skip to main content
Log in

Enhanced Production of Artemisinin by Hairy Root Cultivation of Artemisia annua in a Modified Stirred Tank Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Artemisinin is an important drug commonly used in the treatment of malaria as a combination therapy. It is primarily produced by a plant Artemisia annua, however, its supply from plant is significantly lower than its huge demand and therefore alternative in vitro production routes are sought. Hairy root cultivation could be one such alternative production protocol. Agrobacterium rhizogenes was used to induce hairy roots of A. annua. Statistical optimization of media was thereafter attempted to maximize the biomass/artemisinin production. The growth and product formation kinetics and the significant role of O2 in hairy root propagation were established in optimized media. Mass cultivation of hairy roots was, thereafter, attempted in a modified 3-L Stirred Tank Bioreactor (Applikon Dependable Instruments, The Netherlands) using optimized culture conditions. The reactor was suitably modified to obtain profuse growth of hairy roots by segregating and protecting the growing roots from the agitator rotation in the reactor using a perforated Teflon disk. It was possible to produce 18 g biomass L−1 (on dry weight basis) and 4.63 mg L−1 of artemisinin in 28 days, which increased to 10.33 mg L−1 by the addition of elicitor methyl jasmonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Delabays, N., Simonnet, X., & Gaudin, M. (2001). Current Medicinal Chemistry, 8, 1795–1801.

    Article  CAS  Google Scholar 

  2. Jaziri, M., Shimomura, K., Yoshimatsu, K., Fauconnier, M. L., Marlier, M., & Homes, J. (1995). Journal of Plant Physiology, 145, 175–177.

    Article  CAS  Google Scholar 

  3. Srivastava, S., & Srivastava, A. K. (2007). Critical Reviews in Biotechnology, 27, 29–43.

    Article  CAS  Google Scholar 

  4. Weathers, P. J., Cheetham, R. D., Follansbee, E., & Teoh, K. (1994). Biotechnology Letters, 16, 1281–1286.

    CAS  Google Scholar 

  5. Kim, Y., Wyslouzil, B. E., & Weathers, P. J. (2001). Plant Cell Reports, 20, 451–455.

    Article  CAS  Google Scholar 

  6. Kim, Y. J., Weathers, P. J., & Wyslouzil, B. E. (2003). Biotechnology and Bioengineering, 83, 428–443.

    Article  CAS  Google Scholar 

  7. Xie, D. Y., Wang, L. H., Ye, H. C., & Li, G. F. (2000). Plant Cell Tissue Organ, 63, 161–166.

    Article  CAS  Google Scholar 

  8. Liu, C. Z., Wang, Y. C., Ouyang, F., Ye, H. C., & Li, G. F. (1998). Biotechnology Letters, 20, 265–268.

    Article  CAS  Google Scholar 

  9. Kim, Y. J., Weathers, P. J., & Wyslouzil, B. E. (2002). Biotechnology and Bioengineering, 80, 454–464.

    Article  CAS  Google Scholar 

  10. Liu, C. Z., Wang, Y. C., Ouyang, F., Ye, H. C., & Li, G. F. (1997). Biotechnology Letters, 19, 927–929.

    Article  CAS  Google Scholar 

  11. Wilson, P. D. G., Hilton, M. G., Robins, R. J., & Rhodes, M. J. C. (1987). In G. W. Moody & P. B. Baker (Eds.), International conference on bioreactors and biotransformations (pp. 38–51). London: Elsevier.

    Google Scholar 

  12. Taya, M., Yoyama, A., Kondo, O., Kobayashi, T., & Matsui, C. (1989). Journal of Chemical Engineering of Japan, 22, 84–89.

    Article  Google Scholar 

  13. Hilton, M. G., & Rhodes, M. J. (1990). Applied Microbiology and Biotechnology, 33, 132–138.

    Article  CAS  Google Scholar 

  14. Prakash, G., & Srivastava, A. K. (2007). Process Biochemistry, 42, 93–97.

    Article  CAS  Google Scholar 

  15. Putalun, W., Luealon, W., De-Eknamkul, W., Tanaka, H., & Shoyama, Y. (2007). Biotechnology Letters, 29, 1143–1146.

    Article  CAS  Google Scholar 

  16. Patra, N., Srivastava, A. K., & Sharma, S. (2013). International Journal of Chemical Engineering Applications, 4, 157–160.

    Article  CAS  Google Scholar 

  17. Patra, N., Sharma, S., & Srivastava, A. K. (2011). In M. M. Srivastava, L. D. Khemani, & S. Srivastava (Eds.), Chemistry of phytopotentials: health energy and environment perspectives (pp. 173–176). Heidelberg: Springer-Verlag.

    Google Scholar 

  18. Smith, T. C., Weathers, P. J., & Cheetham, R. O. (1997). In Vitro Cellular and Developmental, 33, 75–79.

    Article  CAS  Google Scholar 

  19. Weathers, P. J., Wyslouzil, B. E., Wobbe, K. K., Kim, Y. J., & Yigit, E. (1999). In Vitro Cellular and Developmental, 35, 286–289.

    Article  CAS  Google Scholar 

  20. Dubois, M., Gilf, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  21. Cataldo, D. A., Haroon, M., Schrader, L. E., & Youngs, V. L. (1975). Communications in Soil Science and Plant, 6, 71–80.

    Article  CAS  Google Scholar 

  22. Brunner, I., Brodbeck, S., & Walthert, L. (2002). Forest Ecology and Management, 165, 75–84.

    Article  Google Scholar 

  23. Murphy, J., & Riley, J. P. (1962). Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  24. Miller, G. H. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  25. Atkinson, N. J., Newbury, H. J., & Fordlloyd, B. V. (1991). Plant Cell Tissue Organ, 27, 77–79.

    Article  Google Scholar 

  26. Srivastava, S., & Srivastava, A. K. (2012). Applied Biochemistry and Biotechnology, 167, 1818–1830.

    Article  CAS  Google Scholar 

  27. Freshney, R. I. (2000). Culture of animal cells: a manual of basic technique (4th ed.). New York: Wiley.

    Google Scholar 

  28. Smeekens, S. (2000). Annual Review of Plant Physiology, 51, 49–81.

    Article  CAS  Google Scholar 

  29. Weathers, P. J., DeJesus, L., Kim, Y. J., Souret, F. F., & Towler, M. (2004). In Vitro Cellular and Developmental Biology - Animal, 40, 64a.

    Google Scholar 

  30. Larronde, F., Krisa, S., Decendit, A., Cheze, C., & Merillon, J. M. (1998). Plant Cell Reports, 17, 946–950.

    Article  CAS  Google Scholar 

  31. Pannuri, S., Reddy, G. R., Mcneill, D., & Curtis, W. R. (1993). Applied Microbiology and Biotechnology, 38, 550–555.

    Article  CAS  Google Scholar 

  32. Wyslouzil, B. E., Whipple, M., Chatterjee, C., Walcerz, D. B., Weathers, P. J., & Hart, D. P. (1997). Biotechnology Progress, 13, 185–194.

    Article  CAS  Google Scholar 

  33. Liu, C. Z., Wang, Y. C., Zhao, B., Guo, C., Ouyang, F., Ye, H. C., & Li, G. F. (1999). In Vitro Cellular and Developmental, 35, 271–274.

    Article  Google Scholar 

  34. Sivakumar, G., Liu, C., Towler, M. J., & Weathers, P. J. (2010). Biotechnology and Bioengineering, 107, 802–813.

    Article  CAS  Google Scholar 

  35. Zhang, B., Zou, T., Lu, Y. H., & Wang, J. W. (2010). African Journal of Biotechnology, 9, 3437–3442.

    CAS  Google Scholar 

  36. Souret, F. F., Kim, Y., Wyslouzil, B. E., Wobbe, K. K., & Weathers, P. J. (2003). Biotechnology and Bioengineering, 83, 653–667.

    Article  CAS  Google Scholar 

  37. Mehrotra, S., Kukreja, A. K., Khanuja, S. P. S., & Mishra, B. N. (2008) Electron J Biotechnol 11

  38. Liu, C., Wang, Y., Guo, C., Ouyang, F., Ye, H., & Li, G. (1998). Bioprocess Engineering, 19, 389–392.

    Google Scholar 

  39. Uozumi, N., Kohketsu, K., & Kobayashi, T. (1993). Journal of Chemical Technology and Biotechnology, 57, 155–161.

    Article  CAS  Google Scholar 

  40. Srivastava, S., & Srivastava, A. K. (2012). Bioprocess and Biosystems Engineering, 35, 1549–1553.

    Article  CAS  Google Scholar 

  41. Chen, D. H., Liu, C. J., Ye, H. C., Li, G. F., Liu, B. Y., Men, Y. L., & Chen, X. Y. (1999). Plant Cell Tissue Organ, 57, 157–162.

    Article  CAS  Google Scholar 

  42. Lu, X., Lin, X. Y., Shen, Q. A., Zhang, F. Y., Wang, Y. Y., Chen, Y. F., Wang, T., Wu, S. Y., & Tang, K. X. (2011). Plant Molecular Biology Reporter, 29, 489–497.

    Article  CAS  Google Scholar 

  43. Pu, G. B., Ma, D. M., Chen, J. L., Ma, L. Q., Wang, H., Li, G. F., Ye, H. C., & Liu, B. Y. (2009). Plant Cell Reports, 28, 1127–1135.

    Article  CAS  Google Scholar 

  44. Caretto, S., Quarta, A., Durante, M., Nisi, R., De Paolis, A., Blando, F., & Mita, G. (2011). Plant Biology (Stuttgart, Germany), 13, 51–58.

    Article  CAS  Google Scholar 

  45. Yu, K., Gao, W., Hahn, E., & Paek, K. Y. (2002). Biochemical Engineering Journal, 11, 211–215.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the supply of elite seed material supply from CIMAP Lucknow. The financial support by Ministry of Human Resource Development, New Delhi (India) for the execution of the above project is gratefully acknowledged by one of the authors (Ms. Nivedita Patra).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, N., Srivastava, A.K. Enhanced Production of Artemisinin by Hairy Root Cultivation of Artemisia annua in a Modified Stirred Tank Reactor. Appl Biochem Biotechnol 174, 2209–2222 (2014). https://doi.org/10.1007/s12010-014-1176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1176-8

Keywords

Navigation