Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2195–2208 | Cite as

Ex Situ Conservation of Phyllanthus fraternus Webster and Evaluation of Genetic Fidelity in Regenerates Using DNA-Based Molecular Marker

  • Richa Upadhyay
  • Sarvesh Pratap Kashyap
  • Chandra Shekhar Singh
  • Kavindra Nath TiwariEmail author
  • Karuna Singh
  • Major Singh
Article

Abstract

Germplasm storage of Phyllanthus fraternus by using synseed technology has been optimized. Synseeds were prepared from nodal segments taken from in vitro-grown plantlets. An encapsulation matrix of 3 % sodium alginate and 100 mM calcium chloride with polymerization duration up to 15 min was found most suitable for synseed formation. Maximum plantlet conversion (92.5 ± 2.5 %) was obtained on a growth regulator-free ½-strength solid Murashige and Skoog (MS) medium. Multiple shoot proliferation was optimum on a ½ MS medium containing 0.5 mg/l 6-benzylaminopurine (BAP). Shoots were subjected to rooting on MS media containing 1 mg/l α-naphthaleneacetic acid (NAA) and acclimatized successfully. Encapsulated nodal segments can be stored for up to 90 days with a survival frequency of 47.33 %. The clonal fidelity of synseed-derived plantlets was also assessed and compared with that of the mother plant using rapid amplified polymorphic DNA and inter-simple sequence repeat analysis. No changes in molecular profiles were observed among the synseed-derived plantlets and mother plant, which confirms the genetic stability of regenerates. This synseed production protocol could be useful for in vitro multiplication, short-term storage, and exchange of germplasm of this important antiviral and hepatoprotective plant.

Keywords

Encapsulation Plantlet conversion Synseed Phyllanthus fraternus Genetic stability Germplasm storage 

Abbreviations

BAP

6-Benzylaminopurine

NAA

α-Naphthaleneacetic acid

MS

Murashige and Skoog

RAPD

Random amplified polymorphic DNA

ISSR

Inter-simple sequence repeat analysis

Notes

Acknowledgments

Richa Upadhyay is highly thankful to CSIR, New Delhi, for providing fellowship in the form of SRF.

References

  1. 1.
    Abedin, S., Mossa, J.S., AI-Said, M.S., & AI-Yahya, M.A. (2001). In: S.A. Chaudhary (Ed.), Flora of kingdom of Saudi Arabia (p. 298). Saudi Arabia: National Agriculture and Water Research Centre RiyadhGoogle Scholar
  2. 2.
    Calixto, J. B., Santos, A. R. S., Cechinel, F. V., & Yunes, R. A. (1998). A review of the plants of the genus Phyllanthus: their chemistry, pharmacology and therapeutic potential. Medicinal Research Review, 4, 225–258.CrossRefGoogle Scholar
  3. 3.
    Banu, S., & Handique, P. J. (2003). Journal of Tropical Medicinal Plant, 4, 109–113.Google Scholar
  4. 4.
    Rajasubramaniam, S., & Pardha Saradhi, P. (2004). Plant Cell Reports, 13, 619–622.Google Scholar
  5. 5.
    Hassan, A., & Khatun, R. (2011). Bangladesh Journal of Scientific and Industrial Research, 46, 205–210.CrossRefGoogle Scholar
  6. 6.
    Rajasubramaniam, S., & Pardha Saradhi, P. (2007). Industrial Crops and Products, 6, 35–40.CrossRefGoogle Scholar
  7. 7.
    Upadhyay, R., Tiwari, K. N., & Singh, K. (2013). Applied Biochemistry and Biotechnology, 169, 2303–2314.CrossRefGoogle Scholar
  8. 8.
    Withers, L. A. (1983). Germplasm storage in plant biotechnology. In S. H. Mantell & H. Smith (Eds.), Plant biotechnology (pp. 187–218). UK: Cambridge University Press.Google Scholar
  9. 9.
    Rao, N. K. (2004). African Journal of Biotechnology, 3, 136–145.Google Scholar
  10. 10.
    Borner, A. (2006). Biotechnology Journal, 1, 1393–1404.CrossRefGoogle Scholar
  11. 11.
    Nyende, A. B., Schittenhelm, S., Wagner, G. M., & Greef, J. M. (2003). In Vitro Cellular and Developmental Biology-Plant, 39, 540–544.CrossRefGoogle Scholar
  12. 12.
    Germana, M. A., Micheli, M., Chiancone, B., Macaluso, L., & Standardi, A. (2011). Plant Cell Tissue and Organ Culture, 106, 299–307.CrossRefGoogle Scholar
  13. 13.
    Daud, N., Taha, R. M., & Hasbullah, N. A. (2008). Journal of Applied Sciences, 8, 4662–4667.CrossRefGoogle Scholar
  14. 14.
    Ghosh, B., & Sen, S. (1994). Plant Cell Reports, 13, 381–385.CrossRefGoogle Scholar
  15. 15.
    Lata, H., Chandra, S., Khan, I., & ElSohly, M. A. (2009). Physiology and Molecular Biology of Plants, 15, 79–86.CrossRefGoogle Scholar
  16. 16.
    Srivastava, V., Khan, S. A., & Banerjee, S. (2009). Plant Cell Tissue and Organ Culture, 99, 193–198.CrossRefGoogle Scholar
  17. 17.
    Ali, A., Gull, I., Majid, A., Saleem, A., Naz, S., & Naveed, N. H. (2012). Journal of Medicinal Plant Research, 6, 1327–1333.Google Scholar
  18. 18.
    Singh, A. K., Sharma, M., Varshney, R., Agarwal, S. S., & Bansal, A. C. (2006). In Vitro Cellular and Developmental Biology-Plant, 42, 109–113.CrossRefGoogle Scholar
  19. 19.
    Williams, K., Kubelik, A. R., Rafalski, J. A., & Tingey, S. V. (1990). Nucleic Acid Research, 8, 1631–1635.Google Scholar
  20. 20.
    Waugh, R., & Powell, W. (1992). Trends in Biotechnology, 10, 186–191.CrossRefGoogle Scholar
  21. 21.
    Rout, G. R., Senapati, S. K., & Aparajita, S. (2010). Czech Journal of Genetics & Plant Breeding, 46, 135–141.Google Scholar
  22. 22.
    Srirama, R., Senthilkumar, U., Sreejayan, N., Ravikanth, G., Gurumurthy, B. R., Shivannae, M. B., Sanjappa, M., Ganeshaiah, K. N., & Uma Shaanker, R. (2010). Journal of Ethnopharmacology, 130, 208–215.CrossRefGoogle Scholar
  23. 23.
    Bandyopadhyay, S., & Raychaudhuri, S. S. (2012). Plant Biosystems, 147, 12–20.CrossRefGoogle Scholar
  24. 24.
    Sarin, B., Clemente, J. P. M., & Mohanty, A. (2013). South African Journal of Botany, 88, 455–458.CrossRefGoogle Scholar
  25. 25.
    Fatima, N., Ahmad, N., Anis, M., & Ahmad, I. (2013). Industrial Crops and Products, 50, 468–477.CrossRefGoogle Scholar
  26. 26.
    Faisal, M., Abdularhaman, A. A., & Hegazy, A. K. (2013). Applied Biochemistry and Biotechnology, 169, 408–417.CrossRefGoogle Scholar
  27. 27.
    Doyle, J. J., & Doyle, J. L. (1990). Focus, 12, 13–15.Google Scholar
  28. 28.
    Gomez, K. A., & Gomez, A. (1984). A statistical procedure for agricultural research. New York: John Wiley & Sons.Google Scholar
  29. 29.
    Ikhlaq, M., Hafiz, I. A., Micheli, M., Ahmad, T., Abbasi, N. A., & Standardi, A. (2010). African Journal of Biotechnology, 9, 5712–5721.Google Scholar
  30. 30.
    Ma, X. M., Wu, C. F., & Wang, G. R. (2011). African Journal of Biotechnology, 10, 15744–15748.CrossRefGoogle Scholar
  31. 31.
    Scocchi, A., Faloci, M., Medina, R., Olmos, S., & Mroginski, L. (2004). Euphytica, 135, 29–38.CrossRefGoogle Scholar
  32. 32.
    Faisal, M., Alatar, A., Ahmad, N., Anis, M., & Hegazy, A. K. (2012). Molecules, 17, 5050–5061.CrossRefGoogle Scholar
  33. 33.
    Chand, S., & Sing, A. K. (2004). Journal of Plant Physiology, 161, 237–243.CrossRefGoogle Scholar
  34. 34.
    Ozudogru, E. A., Kirdok, E., Kaya, E., Capuana, M., De Carlo, A., & Engelmann, F. (2011). Scientia Horticulturae, 127, 431–435.CrossRefGoogle Scholar
  35. 35.
    Hung, C. D., & Trueman, S. J. (2012). Acta Physiologia Plantarum, 34, 117–128.CrossRefGoogle Scholar
  36. 36.
    Redenbaugh, K., Fujii, J.A., & Slade. (1993). In: K. Redenbaugh (ed.), Synseeds (pp. 38–46). Boca Raton: CRC PressGoogle Scholar
  37. 37.
    Maqsood, M., Mujib, A., & Siddiqui, Z. H. (2012). G Don Biotechnology, 11, 37–43.Google Scholar
  38. 38.
    Singh, J., & Tiwari, K. N. (2010). Industrial Crops and Products, 32, 534–538.CrossRefGoogle Scholar
  39. 39.
    Bolhnark, M., & Eliasson, L. (1986). Physiologia Plantarum, 68, 662–666.CrossRefGoogle Scholar
  40. 40.
    Rubasinghe, M. K., Amarasinghe, K. G. K. D., & Krishnarajha, S. A. (2009). Ceylon Journal of Science (Biological Sciences), 38, 17–22.CrossRefGoogle Scholar
  41. 41.
    Andlib, A., Verma, R. N., & Batra, A. (2011). Journal of Pharmaceutical Research, 4, 2007–2009.Google Scholar
  42. 42.
    Devendra, B. N., Srinivas, N., & Naik, G. R. (2011). International Journal of Botany, 7, 216–222.CrossRefGoogle Scholar
  43. 43.
    Rai, M. K., Jaiswal, V. S., & Jaiswal, U. (2008). Scientia Horticulturae, 118, 33–38.CrossRefGoogle Scholar
  44. 44.
    Sarmah, D. K., Borthakur, M., & Borua, P. K. (2010). Current Science, 98, 686–690.Google Scholar
  45. 45.
    Naik, S. K., & Chand, P. K. (2006). Scientia Horticulturae, 108, 247–252.CrossRefGoogle Scholar
  46. 46.
    Taha, R. M., Hasbullah, N. A., & Awal, A. (2009). Acta Horticulturae, 829, 91–98.Google Scholar
  47. 47.
    Faisal, M., Ahmed, N., & Anis, M. (2006). American-Eurasian Journal of Agricultural and Environmental Sciences, 1, 1–6.CrossRefGoogle Scholar
  48. 48.
    Nieves, W., Zambrano, Y., Tapia, R., Cid, M., Pina, D., & Castillo, R. (2003). Plant Cell Tissue and Organ Culture, 7, 279–282.CrossRefGoogle Scholar
  49. 49.
    Redenbaugh, K. (1993). Synseeds: applications of synthetic seeds to crop improvement. Boca Raton: CRC Press.Google Scholar
  50. 50.
    Micheli, M., Hafiz, I. A., & Standardi, A. (2007). Scientia Horticulturae, 113, 286–292.CrossRefGoogle Scholar
  51. 51.
    Rani, V., Parida, A., & Raina, S. N. (1995). Plant Cell Reports, 14, 459–462.CrossRefGoogle Scholar
  52. 52.
    Rahman, M. H., & Rajora, O. P. (2001). Plant Cell Reports, 20, 531–536.CrossRefGoogle Scholar
  53. 53.
    Singh, M., Saroop, J., & Dhiman, B. (2004). Biologia Plantarum, 48, 113–115.CrossRefGoogle Scholar
  54. 54.
    Marimuthu, J., & Antonisamy, A. (2007). Iranian Journal of Biotechnology, 5, 240–245.Google Scholar
  55. 55.
    Lata, H., Chandra, S., Techen, N., Khan, I.A., & El Sohly, M.A. (2011). Biotechnology letter, (609–615).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Richa Upadhyay
    • 1
  • Sarvesh Pratap Kashyap
    • 2
  • Chandra Shekhar Singh
    • 1
  • Kavindra Nath Tiwari
    • 1
    Email author
  • Karuna Singh
    • 3
  • Major Singh
    • 2
  1. 1.Department of Botany, MMVBanaras Hindu UniversityVaranasiIndia
  2. 2.Crop Improvement DivisionIndian Institute of Vegetable ResearchVaranasiIndia
  3. 3.Department of Zoology, MMVBanaras Hindu UniversityVaranasiIndia

Personalised recommendations