Skip to main content
Log in

Physical and Bioengineering Properties of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte Complex Microcapsules as Immobilisation Matrices for a Whole-Cell Baeyer–Villiger Monooxygenase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Direct comparison of key physical and chemical-engineering properties of two representative matrices for multipurpose immobilisations was performed for the first time. Polyvinyl alcohol lens-shaped particles LentiKats® and polyelectrolyte complex microcapsules were characterised by advanced techniques with respect to the size distribution of the particles, their inner morphology as revealed by fluorescent probe staining, mechanical resistance, size-exclusion properties, determination of effective diffusion coefficient and environmental scanning electron microscope imaging. While spherical polyelectrolyte complex microcapsules composed of a rigid semipermeable membrane and a liquid core are almost uniform in shape and size (diameter of 0.82 mm; RSD = 5.6 %), lens-shaped LentiKats® are characterised by wider size distribution (diameter of 3.65 mm; RSD = 10.3 % and height of 0.341 mm; RSD = 32.3 %) and showed the same porous structure throughout their whole volume at the mesoscopic (micrometre) level. Despite differences in their inner structure and surface properties, the pore diameter of ∼ 2.75 nm for regular polyelectrolyte complex microcapsules and ∼ 1.89 nm for LentiKats® were similar. These results were used for mathematical modelling, which provided the estimates of the effective diffusion coefficient of sucrose. This value was 1.67 × 10−10 m2 s−1 for polyelectrolyte complex microcapsules and 0.36 × 10−10 m2 s−1 for LentiKats®. Recombinant cells Escherichia coli-overexpressing enzyme cyclopentanone monooxygenase were immobilised in polyelectrolyte complex microcapsules and LentiKats® for comparison of their operational stability using model Baeyer–Villiger oxidation of (±)-cis-bicyclo [3.2.0] hept-2-en-6-one to regioisomeric lactones as important chiral synthons for potential pharmaceuticals. Both immobilisation matrices rendered high operational stability for whole-cell biocatalyst with no reduction in the biooxidation rate over 18 repeated reaction cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bučko, M., Mislovičová, D., Nahálka, J., Vikartovská, A., Šefčovičová, J., Katrlík, J., Tkáč, J., Gemeiner, P., Lacík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičová, D., & Švitel, J. (2012). Chemical Papers, 66, 983–998. doi:10.2478/s11696-012-0226-3.

    Article  Google Scholar 

  2. Gerbsch, N., & Buchholz, R. (1995). FEMS Microbiology Reviews, 16, 259–269. doi:10.1111/j.1574-6976.1995.tb00173.x.

    Article  CAS  Google Scholar 

  3. Jekel, M., Buhr, A., Willke, T., & Vorlop, K. D. (1998). Chemical Engineering & Technology, 21, 275–278.

    Article  CAS  Google Scholar 

  4. Rebroš, M., Rosenberg, M., Grosová, Z., Krištofíková, L., Paluch, M., & Sipöcz, M. (2009). Applied Biochemistry and Biotechnology, 158, 561–70.

    Article  Google Scholar 

  5. Trögl, J., Krhůtková, O., Pilařová, V., Dáňová, P., Holíček, R., Kohlová, M., Hejda, S., Smrčka, J., Boušková, A., & Křiklavová, L. (2012). International Journal of Environmental Science and Technology, 9, 425–432. doi:10.1007/s13762-012-0048-4.

    Article  Google Scholar 

  6. Lacík, I., Briššová, M., Anilkumar, A. V., Powers, A. C., & Wang, T. G. (1998). Journal of Biomedical Materials Research, 39, 52–60. doi:10.1002/(SICI)1097-4636(199801)39:1<52::AID-JBM7>3.0.CO;2-H.

    Article  Google Scholar 

  7. Lacík, I. (2006). Australian Journal of Chemistry, 59, 508–524. doi:10.1071/CH06197.

    Article  Google Scholar 

  8. Anilkumar, A. V., Lacík, I., & Wang, T. G. (2001). Biotechnology and Bioengineering, 75, 581–589. doi:10.1002/bit.10077.

    Article  CAS  Google Scholar 

  9. Briššová, M., Lacík, I., Powers, A. C., Anilkumar, A. V., & Wang, T. J. (1998). Biomedical Materials Research, 39, 61–70. doi:10.1002/(SICI)1097-4636(199801)39:1<61::AID-JBM8>3.0.CO;2-G.

    Article  Google Scholar 

  10. Podskočová, J., Chorvát, D., Kolláriková, G., & Lacík, I. (2005). Laser Physics, 15, 545–551.

    Google Scholar 

  11. Rokstad, A.M.A., Lacík, I., de Vos, P. and Strand, B.L. (2014) Adv. Drug Del. Rev. 67-68, 111-130. doi:10.1016/j.addr.2013.07.010.

  12. Bučko, M., Vikartovská, A., Lacík, I., Kolláriková, G., Gemeiner, P., Pätoprstý, V., & Brygin, M. (2005). Enzyme and Microbial Technology, 36, 118–126. doi:10.1016/j.enzmictec.2004.07.006.

    Article  Google Scholar 

  13. Vikartovská, A., Bučko, M., Mislovičová, D., Pätoprstý, V., Lacík, I., & Gemeiner, P. (2007). Enzyme and Microbial Technology, 41, 748–755. doi:10.1016/j.enzmictec.2007.06.010.

    Article  Google Scholar 

  14. Bučko, M., Schenkmayerová, A., Gemeiner, P., Vikartovská, A., Mihovilovič, M. D., & Lacík, I. (2011). Enzyme and Microbial Technology, 49, 284–288. doi:10.1016/j.enzmictec.2011.05.013.

    Article  Google Scholar 

  15. Prüsse, U., Bilancetti, L., Bučko, M., Bugarski, B., Bukowski, J., Gemeiner, P., Lewińska, D., Manojlovic, V., Massart, B., Nastruzzi, C., Nedovic, V., Poncelet, D., Siebenhaar, S., Tobler, L., Tosi, A., Vikartovská, A., & Vorlop, K. D. (2008). Chemical Papers, 62, 364–374. doi:10.2478/s11696-008-0035-x.

    Article  Google Scholar 

  16. de Vos, P., Bučko, M., Gemeiner, P., Navrátil, M., Svitel, J., Faas, M., Strand, B. L., Skjak-Braek, G., Morch, Y. A., Vikartovská, A., Lacík, I., Kolláriková, G., Orive, G., Poncelet, D., Pedraz, J. L., & Ansorge-Schumacher, M. B. (2009). Biomaterials, 30, 2559–2570. doi:10.1016/j.biomaterials.2009.01.014.

    Article  Google Scholar 

  17. Junter, G. A., & Jouenne, T. (2004). Biotechnology Advances, 22, 633–658. doi:10.1016/j.biotechadv.2004.06.003.

    Article  CAS  Google Scholar 

  18. Hucík, M., Bučko, M., Gemeiner, P., Stefuca, V., Vikartovská, A., Mihovilovic, M. D., Rudroff, F., Iqbal, N., Chorvát, D., Jr., & Lacík, I. (2010). Biotechnology Letters, 32, 675–80. doi:10.1007/s10529-010-0203-2.

    Article  Google Scholar 

  19. Schenkmayerová, A., Bučko, M., Gemeiner, P., Chorvát, D., Jr., & Lacík, I. (2012). Biotechnology Letters, 34, 309–14. doi:10.1007/s10529-011-0765-7.

    Article  Google Scholar 

  20. Bosserman, M. A., Downey, T., Noinaj, N., Buchanan, S. K., & Rohr, J. (2013). ACS Chemical Biology, 8, 2466–2477. doi:10.1021/cb400399b.

    Article  CAS  Google Scholar 

  21. Schenkmayerová, A., Bučko, M., Gemeiner, P., & Katrlík, J. (2013). Biosensors & Bioelectronics, 50, 235–238. doi:10.1016/j.bios.2013.06.061.

    Article  Google Scholar 

  22. de Gonzalo, G., Mihovilovic, M. D., & Fraaije, M. W. (2010). ChemBioChem, 11, 2208–2231. doi:10.1002/cbic.201000395.

    Article  Google Scholar 

  23. Leisch, H., Morley, K., & Lau, C. K. (2011). Chemical Reviews, 111, 4165–4222. doi:10.1021/cr1003437.

    Article  CAS  Google Scholar 

  24. Balke, K., Kadow, M., Mallin, H., Saß, S., & Bornscheuer, U. T. (2012). Organic & Biomolecular Chemistry, 10, 6249–6265. doi:10.1039/C2OB25704A.

    Article  CAS  Google Scholar 

  25. Rebroš, M., Lipták, L., Rosenberg, M., Bučko, M., & Gemeiner, P. (2014). Letters in Applied Microbiology, 58, 556–563. doi:10.1111/lam.12227.

    Article  Google Scholar 

  26. R. Stloukal, Lentikats Czech Republic, personal communication, 2013.

  27. Neděla, V., Hřib, J., & Vooková, B. (2012). Biological Plantarum, 56, 595–598. doi:10.1007/s10535-012-0062-x.

    Article  Google Scholar 

  28. Tihlaříková, E., Neděla, V., & Shiojiri, M. (2013). Microscopy and Microanalysis, 19, 914–918. doi:10.1017/S1431927613000603.

    Article  Google Scholar 

  29. Neděla, V., Konvalina, I., Lencová, B., & Zlámal, J. (2011). Nuclear Instrumentation and Methodology, A 645, 79–83. doi:10.1016/j.nima.2010.12.200.

    Article  Google Scholar 

  30. Briššová, M., Petro, M., Lacík, I., Powers, A. C., & Wang, T. (1996). Analytical Biochemistry, 242, 104–111. doi:10.1006/abio.1996.0435.

    Article  Google Scholar 

  31. Hoesli, C. A., Kiang, R. L., Mocinecova, D., Speck, M., Moskova, D. J., Donald-Hague, C., Lacík, I., Kieffer, T. J., & Piret, J. M. (2012). Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100, 1017–1028. doi:10.1002/jbm.b.32667.

    Article  Google Scholar 

  32. Guiochon, G., Fellinger, A., Shirazi, D. G., & Katti, A. M. (2006). Fundamentals of Preparative and Nonlinear Chromatography (2nd ed.). Amsterdam: Academic.

    Google Scholar 

  33. Van Deemter, J. J., & Zuiderweg, F. J. (1956). Chemical Engineering Science, 5, 271–289. doi:10.1016/0009-2509(96)81813-6.

    Article  Google Scholar 

  34. Stewart, W. E., Caracotsios, M., & Sørensen, J. P. (1992). AIChEJ, 38, 641–650. doi:10.1002/aic.690380502.

    Article  CAS  Google Scholar 

  35. Grosová, Z., Rosenberg, M., Gdovin, M., Sláviková, L., & Rebroš, M. (2009). Food Chemistry, 116, 96–100. doi:10.1016/j.foodchem.2009.02.011.

    Article  Google Scholar 

  36. Chung, S. F., & Wen, C. Y. (1968). AIChEJ, 14, 857–866. doi:10.1002/aic.690140608.

    Article  CAS  Google Scholar 

  37. Wilson, E. J., & Geankoplis, C. J. (1966). Indian Engineering of Chemical Fundamentals, 5, 9–14. doi:10.1021/i160017a002.

    Article  CAS  Google Scholar 

  38. Glueckauf, E., & Coates, J. I. (1947). Journal of Chemical Society, 1315-1321. doi:10.1039/JR9470001315

  39. Dojčanský, J., & Longauer, J. (2000) in Chemical engineering II (in Slovak: Chemické inžinierstvo II), Malé Centrum, Bratislava.

  40. Barrande, M., Bouchet, R., & Denoyel, R. (2007). Analytical Chemistry, 79, 9115–9121. doi:10.1021/ac071377r.

    Article  CAS  Google Scholar 

  41. Renkin, E. M. (1954). Journal of General Physiology, 38, 225–243.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Grant Agency for Science VEGA 1/0229/12, by the Slovak Research and Development Agency under contract No. APVV-0302-10 and No. APVV-0486-10 as well as Grant Agency of the Czech Republic GA14-22777S. We thank Prof. Marko D. Mihovilovic (VUT, Vienna, Austria) for providing the expression strain E. coli-overexpressing CPMO and Dr. Radek Stloukal from LentiKats (Czech Republic) for personal communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Schenkmayerová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3091 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenkmayerová, A., Bučko, M., Gemeiner, P. et al. Physical and Bioengineering Properties of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte Complex Microcapsules as Immobilisation Matrices for a Whole-Cell Baeyer–Villiger Monooxygenase. Appl Biochem Biotechnol 174, 1834–1849 (2014). https://doi.org/10.1007/s12010-014-1174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1174-x

Keywords

Navigation