Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2181–2194 | Cite as

Synthesis, Colloidal Properties and Cytotoxicity of Biopolymer Nanoparticles

  • Dhanya Moorkoth
  • Kesavan Madhavan NampoothiriEmail author
Article

Abstract

To characterize the physicochemical and biological stability of nanodevices suitable for biomedical applications, polylactic acid (PLA) nanoparticles (NPs) of 112 ± 6 nm and polyhydroxy butyrate (PHB) of 15 ± 5 nm size were prepared by standardizing the suitable method for each. Morphology of NPs was studied by scanning and transmission electron microscopy and temperature stability by thermogravimetric analysis. Their stability in biological fluids (simulated gastrointestinal and saliva) and tolerance against 0.5 mM NaCl were analyzed. PHB NPs remained stable in all fluids, while after 24 h treatment, the PLA NPs showed the beginning of disintegration with intestinal fluid mimic. In addition to the preparation of polyethylene glycol (PEG) surface-coated NPs, PLA–PEG–PLA triblock copolymer (MW ∼ 7,366 Da) was also chemically synthesized and characterized. Cytotoxicity of all forms of nanoparticles was tested by MTT assay and by annexin pi staining.

Keywords

Biopolymer Gastrointestinal fluid Nanoparticles Polylactic acid Polyhydroxy butyrate 

Notes

Acknowledgments

We thank the financial support from CSIR, New Delhi under the XIIth five year plan network project, BIODISCOVERY (BSC 120).

Supplementary material

12010_2014_1172_MOESM1_ESM.doc (32 kb)
Supplementary Table 1 (DOC 32 kb)
12010_2014_1172_MOESM2_ESM.doc (30 kb)
Supplementary Table 2 (DOC 30 kb)
12010_2014_1172_MOESM3_ESM.doc (799 kb)
Supplementary Figure 1 (DOC 799 kb)

References

  1. 1.
    Khor, E., & Lim, L. Y. (2003). Biomaterials, 24, 2339–2349.CrossRefGoogle Scholar
  2. 2.
    Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). The Journal of the federation of American Societies for Experimental Biology, 19, 311–330.CrossRefGoogle Scholar
  3. 3.
    Nair, N. R., Nampoothiri, K. M., & Pandey, A. (2012). Biotechnology Letters, 34(11), 2031–2035.CrossRefGoogle Scholar
  4. 4.
    Chen, C., Yu, C. H., Cheng, Y. C., Yu, P. H. F., & Cheung, M. K. (2006). Biomaterials, 27, 4804–4814.CrossRefGoogle Scholar
  5. 5.
    Tobio, M., Sanchez, A., Vila, A., Soriano, I., Evora, C., Vila-Jato, J. L., & Alonso, M. J. (2000). Colloids and Surfaces B: Biointerfaces, 18, 315–323.CrossRefGoogle Scholar
  6. 6.
    Ogawa, Y., Yamamoto, M., Okada, T., Yashiki, T., & Shimamoto, T. (1988). Chemical and Pharmaceutical Bulletin, 36, 1095–1103.CrossRefGoogle Scholar
  7. 7.
    Govender, T., Snjezana, S., Martin, C., Garnett, I. L., & Davis, S. S. (1999). Journal of Controlled Release, 57, 171–185.CrossRefGoogle Scholar
  8. 8.
    Alonso, M. J., Gupta, R. K., Min, C., Siber, G. R., & Langer, R. (1994). Vaccine, 12, 299–306.CrossRefGoogle Scholar
  9. 9.
    Chenana, M., Gil, P. R., Miguel, A., Correa, D., Luis, M., Liz, M., & Wolfgang, J. P. (2013). Angewandte Chemie International Edition, 52, 4179–4183.CrossRefGoogle Scholar
  10. 10.
    Scholes, P. D., Coombes, A. G. A., Illum, L., Davis, S. S., Vert, M., & Davies, M. C. (1993). Journal of Controlled Release, 25, 145–153.CrossRefGoogle Scholar
  11. 11.
    Asadi, H., Rostamizadeh, K., Salari, D., & Hamidi, M. (2011). Journal of Microencapsulation, 28(5), 406–416.CrossRefGoogle Scholar
  12. 12.
    Lazzari, S., Davide, M., Fabio, C., Mario, S., Massimo, M., & Luisa, D. (2012). Journal of Nanoparticle Research, 14, 92.CrossRefGoogle Scholar
  13. 13.
    Barker, S. B., & Summerson, W. H. (1941). Journal of Biology and Chemistry, 138, 535–554.Google Scholar
  14. 14.
    Leach, K. J., & Mathiowitz, E. (1998). Biomaterials, 19, 1973–1980.CrossRefGoogle Scholar
  15. 15.
    Essa, S., Rabanel, J. M., & Hildgen, P. (2010). European Journal of Pharmaceutics and Biopharmaceutics, 75, 96–106.CrossRefGoogle Scholar
  16. 16.
    Fresta, M., Fontana, G., Bucolo, C., Cavallallaro, G., Giammona, G., & Puglisi, G. (2001). Journal of Pharmaceutical Sciences, 90, 288–297.CrossRefGoogle Scholar
  17. 17.
    Tice, T. R., & Gilley, R. M. (1985). Journal Control Release, 2, 343–352.CrossRefGoogle Scholar
  18. 18.
    Fessi, H., Puisieux, F., Devissaguet, J. P., Amoury, N., & Benita, S. (1989). International Journal of Pharmaceutics, 113, r1–r4.CrossRefGoogle Scholar
  19. 19.
    Peltonen, L., Koistinen, P., Karjalainen, M., Hakkinen, A., & Hirvonen, J. (2002). American Association of Pharmaceutical Scientists, 3, E32.Google Scholar
  20. 20.
    Wehlre, P., Magenheim, B., & Benita, S. (1995). European Journal of Pharmaceutics and Biopharmaceutics, 41, 19–26.Google Scholar
  21. 21.
    Valo, H., Peltonen, L., Vehvilainen, S., Karjalainen, M., & Kostiainen R, et al. (2009). Small, 1791–1798.Google Scholar
  22. 22.
    Shakweh, M., Besnard, M., Nicolas, V., & Fattal, E. (2005). European Journal of Pharmaceutics and Biopharmaceutics, 61, 1–13.CrossRefGoogle Scholar
  23. 23.
    Sendo, T., Teshima, D., Makino, K., Mishima, K., Itoh, Y., et al. (2002). Journal of Clinical Pharmacy and Therapeutics, 27, 79–84.CrossRefGoogle Scholar
  24. 24.
    Hunter, R. J. (1981). Zeta potential in colloid science principles and applications (p. 386). New York: Academic.Google Scholar
  25. 25.
    Benita, S., & Levy, M. Y. (1993). Journal of Pharmaceutical Sciences, 82, 1069–1079.CrossRefGoogle Scholar
  26. 26.
    Xiong, Y. C., Yao, Y. C., Zhan, X. Y., & Chen, G. Q. (2010). Journal Biomaterials Sciences Polymer, 21, 127–140.CrossRefGoogle Scholar
  27. 27.
    Xiao, R. Z., Zeng, Z. W., Zhou, G. L., Wang, J. J., Li, F. Z., & Wang, A. M. (2010). International Journal of Nanomedicine, 5, 1057–1065.Google Scholar
  28. 28.
    Mohs, A. M., Duan, H. W., Kairdolf, B. A., Smith, A. M., & Nie, S. M. (2009). Nano Research, 2(6), 500–508.CrossRefGoogle Scholar
  29. 29.
    Kuentz, M. (2008). American Association of Pharmaceutical Scientists, 10, 473–479.Google Scholar
  30. 30.
    Win, K. Y., & Feng, S. S. (2005). Biomaterials, 26(15), 2713–2722.CrossRefGoogle Scholar
  31. 31.
    Ropert, D. C., Bazile, J., Brendenbach, M., Marlard, M., Veillard, G., & Spenlehauer. (1993). Colloids and Surfaces B: Biointerfaces, 1, 233–239.CrossRefGoogle Scholar
  32. 32.
    Landry, F. B., Bazile, D. V., Spenlehauer, G., Veillard, M., & Kreuter, J. (1996). S.T.P. Pharmacology Sciences, 6(3), 195–202.Google Scholar
  33. 33.
    Tobrio, M., Gref, R., Sánchez, L. R., & Alonso, M. J. (1998). Pharmaceutical Research, 15(2), 270–275.CrossRefGoogle Scholar
  34. 34.
    Jain, A. K., Goyal, A. K., Mishra, N., Vaidya, B., Mangala, S., & Vyas, S. P. (2010). International Journal of Pharmaceutics, 387, 253–262.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dhanya Moorkoth
    • 1
  • Kesavan Madhavan Nampoothiri
    • 1
    Email author
  1. 1.Biotechnology Division, CSIR, Industrial Estate (PO)National Institute for Interdisciplinary Science and Technology (NIIST)TrivandrumIndia

Personalised recommendations