Skip to main content

Advertisement

Log in

Mixed Food Waste as Renewable Feedstock in Succinic Acid Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mixed food waste, which was directly collected from restaurants without pretreatments, was used as a valuable feedstock in succinic acid (SA) fermentation in the present study. Commercial enzymes and crude enzymes produced from Aspergillus awamori and Aspergillus oryzae were separately used in hydrolysis of food waste, and their resultant hydrolysates were evaluated. For hydrolysis using the fungal mixture comprising A. awamori and A. oryzae, a nutrient-complete food waste hydrolysate was generated, which contained 31.9 g L−1 glucose and 280 mg L−1 free amino nitrogen. Approximately 80–90 % of the solid food waste was also diminished. In a 2.5 L fermentor, 29.9 g L−1 SA was produced with an overall yield of 0.224 g g−1 substrate using food waste hydrolysate and recombinant Escherichia coli. This is comparable to many similar studies using various wastes or by-products as substrates. Results of this study demonstrated the enormous potential of food waste as renewable resource in the production of bio-based chemicals and materials via microbial bioconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  2. Buchner, B., Fischler, C., Reilly, J., Riccardi, G., Ricordi, C., & Veronesi, U. (2012). Food waste: Causes, impacts and proposals. Barilla Center for Food & Nutrition.

  3. Stuart, T. (2009). Waste: Uncovering the global food scandal. New York: WW Norton & Company.

    Google Scholar 

  4. Arancon, R. A. D., Lin, C. S. K., Chan, K. M., Kwan, T. H., & Luque, R. (2013). Energy Science and Engineering, 1, 53–71.

    Article  Google Scholar 

  5. Koutinas, A. A., Pleissner, D., Vlysidis, A., Kopsahelis, N., Lopez Garciac, I., Kookosd, I., Papanikolaou, S., & Lin, C. S. K. (2014). Chemical Society Reviews, 43, 2587–2627.

    Article  CAS  Google Scholar 

  6. Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., Koutinas, A. A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., & Luque, R. (2013). Energy and Environmental Science, 6, 426–464.

    Article  CAS  Google Scholar 

  7. Leung, C. C. J., Cheung, A. S. Y., Zhang, A. Y., Lam, K. F., & Lin, C. S. K. (2012). Biochemical Engineering Journal, 65, 10–15.

    Article  CAS  Google Scholar 

  8. Zhang, A. Y., Sun, Z., Leung, C. C. J., Han, W., Lau, K. Y., Li, M., & Lin, C. S. K. (2013). Green Chemistry, 15, 690–695.

    Article  CAS  Google Scholar 

  9. Pleissner, D., Lam, W. C., Sun, Z., & Lin, C. S. K. (2013). Bioresource Technology, 137, 139–146.

    Article  CAS  Google Scholar 

  10. McKinlay, J. B., Vielle, C., & Zeikus, J. G. (2007). Applied Microbiology and Biotechnology, 76, 727–740.

    Article  CAS  Google Scholar 

  11. Werpy, T., & Petersen, G. (2004). Top Value Added Chemicals from Biomass, Vol. 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (pp. 23–24). Oakridge: U.S. Department of Energy.

  12. Bozell, J. J., & Petersen, G. R. (2010). Green Chemistry, 12, 539–554.

    Article  CAS  Google Scholar 

  13. Taylor, P. (2010). Biosuccinic acid ready for take off? Royal Society of Chemistry, http://www.rsc.org/chemistryworld/News/2010/January/21011003.asp.

  14. de Guzman, D. (2012). Chemical industry awaits for bio-succinic acid potential, ICIS, http://www.icis.com/Articles/2012/01/30/9527521/chemical-industry-awaits-for-bio-succinic-acid-potential.html.

  15. Li, M., Wang, J., Geng, Y., Li, Y., Wang, Q., Liang, Q., & Qi, Q. (2012). Microbial Cell Factories, 11, 19.

    Article  CAS  Google Scholar 

  16. Du, C., Lin, S. K. C., Koutinas, A., Wang, R., Dorado, P., & Webb, C. (2008). Bioresource Technology, 99, 8310–8315.

    Article  CAS  Google Scholar 

  17. Li, Y., Li, M., Zhang, X., Yang, P., Liang, Q., & Qi, Q. (2013). Bioresource Technology, 149, 333–340.

    Article  CAS  Google Scholar 

  18. Dorado, P. M., Lin, S. K. C., Koutinas, A., Du, C., Wang, R., & Webb, C. (2009). Journal of Biotechnology, 143, 51–59.

    Article  CAS  Google Scholar 

  19. Pleissner, D., Kwan, T. H., & Lin, C. S. K. (2014). Bioresource Technology, 158, 48–54.

    Article  CAS  Google Scholar 

  20. Koutinas, A. A., Arifeen, N., Wang, R., & Webb, C. (2007). Biotechnology and Bioengineering, 97, 61–72.

    Article  CAS  Google Scholar 

  21. Yan, S., Yao, J., Yao, L., Zhi, Z., Chen, X., & Wu, J. (2012). Brazilian Archives of Biology and Technology, 55, 183–192.

    Article  CAS  Google Scholar 

  22. Lin, C. S. K., Luque, R., Clark, J. H., Webb, C., & Du, C. (2012). Biofuels, Bioproducts and Biorefining, 6, 88–104.

    Article  CAS  Google Scholar 

  23. Lin, C. S. K., Du, C., Koutinas, A., Wang, R., & Webb, C. (2008). Biochemical Engineering Journal, 41, 128–135.

    Article  CAS  Google Scholar 

  24. Wang, R. (1999). PhD thesis, The University of Manchester, UK.

  25. Du, C., Lin, C. S. K., Koutinas, A., Wang, R., & Webb, C. (2007). Applied Microbiology and Biotechnology, 76, 1263–1270.

    Article  CAS  Google Scholar 

  26. Delgado, R., Castro, A. J., & Vázquez, M. (2009). LWT-Food Science and Technology, 42, 797–804.

    Article  CAS  Google Scholar 

  27. Yu, J., Li, Z., Ye, Q., Yang, Y., & Chen, S. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 1033–1040.

    Article  CAS  Google Scholar 

  28. Chen, K. Q., Li, J., Ma, J. F., Jiang, M., Wei, P., & Liu, Z. M. (2011). Bioresource Technology, 102, 1704–1708.

    Article  CAS  Google Scholar 

  29. Wang, R., Shaarani, S. M., Godoy, L. C., Melikoglu, M., Vergara, C. S., & Koutinas, A. (2010). Enzyme and Microbial Technology, 47, 77–83.

    Article  CAS  Google Scholar 

  30. Li, Q., Siles, J. A., & Thompson, I. P. (2010). Applied Microbiology and Biotechnology, 88, 671–678.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Carol Sze Ki LIN acknowledges the Research Grant Councils in Hong Kong for the provision of General Research Fund (GRF)/Early Career Scheme (ECS) 2013–2014 (Project No. 189713). Zheng SUN acknowledges financial support from the Shanghai Pujiang Program (Grant No. 13PJ1403500) and the Doctoral Fund of Ministry of Education of China (Grant No. 20133104120004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Sze Ki Lin.

Additional information

Zheng Sun and Mingji Li equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Li, M., Qi, Q. et al. Mixed Food Waste as Renewable Feedstock in Succinic Acid Fermentation. Appl Biochem Biotechnol 174, 1822–1833 (2014). https://doi.org/10.1007/s12010-014-1169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1169-7

Keywords

Navigation