Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2171–2180 | Cite as

Consumption of 2-Chlorophenol Using Anaerobic Sludge: Physiological and Kinetic Analysis

  • Emir Martínez-Gutiérrez
  • Anne-Claire Texier
  • Flor de María Cuervo-López
  • Jorge GómezEmail author
Article

Abstract

Chlorophenols are toxic and recalcitrant compounds produced by many industrial. Different strategies have been used to improve their biological consumption, but there is insufficient information to understand how the process is carried out. The objective of this study was to evaluate in batch tests the effect of the addition of phenol, acetate, or glucose as electron donors at different concentrations on the efficiencies, yields, and specific rates of 2-chlorophenol (2-CP) consumption. The addition of phenol (177.6 mg C/L), acetate (127.6 mg C/L), or glucose (77.6 mg C/L) increased the 2-CP consumption efficiency up to 54.6, 98.6, and 97.8 %, respectively. With respect to the control assay without electron donor, the specific rate of 2-CP consumption was up to 2.5 times higher with phenol (177.6 mg C/L), 8.4 times higher with acetate (127.6 mg C/L), and 3 times higher with glucose (127.6 mg C/L). The results showed that the type and concentration of electron donor determine the physiological behavior of the anaerobic sludge, modifying efficiency, yield, and specific rate values of the 2-CP consumption process. The addition of readily oxidable cosubstrates seems to be a good alternative and might be used for the biological treatment of industrial wastewater polluted with chlorinated phenols.

Keywords

Anaerobic sludge Chlorophenol Phenol Acetate Glucose Wastewater 

Notes

Acknowledgments

This work was supported by CONACYT, México (SEP-CONACYT-CB-2011-01-165174).

References

  1. 1.
    Häggblom, M. M., & Bossert, I. D. (2003). Dehalogenation microbial processes and environmental applications In Häggblom, M. M., & Bossert, I. D, (eds.), (pp. 3–29).Kluwer Academic Publishers, New York.Google Scholar
  2. 2.
    Milliken, C. E., Meier, G. P., Sowers, K. R., & May, H. D. (2004). Applied and Environmental Microbiology, 70, 2494–2496.CrossRefGoogle Scholar
  3. 3.
    Vallecillo, A., García-Encina, P. A., & Peña, M. (1999). Water Science and Technology, 40, 161–168.CrossRefGoogle Scholar
  4. 4.
    ATSDR (Agency for Toxic Substances and Disease Registry) (2011). http://www.atsdr.cdc.gov/spl/resources/ATSDR_2011_SPL_Detailed_Data_Table.pdf. Accessed 20 January 2014.
  5. 5.
    Farrell, A., & Quilty, B. (1999). Biodegradation, 10, 353–362.CrossRefGoogle Scholar
  6. 6.
    Loh, K.-C., & Wu, T. (2006). The Canadian Journal of Chemical Engineering, 84, 356–367.CrossRefGoogle Scholar
  7. 7.
    Buitrón, G., & Moreno-Andrade, I. (2011). Journal Chemical Technology Biotechnology, 86, 669–674.CrossRefGoogle Scholar
  8. 8.
    Dietrich, G., & Winter, J. (1990). Applied Microbiology and Biotechnology, 34, 253–258.CrossRefGoogle Scholar
  9. 9.
    Häggblom, M. M., Knight, V. K., & Kerkhof, L. J. (2000). Environmental Pollution, 107, 199–207.CrossRefGoogle Scholar
  10. 10.
    Wang, X., Xing, L., Qui, T., & Han, M. (2013). Environmental Science Pollution Research, 20, 2236–2243.CrossRefGoogle Scholar
  11. 11.
    Takeuchi, R., Suwa, Y., Yamagishi, T., & Yonezawa, Y. (2000). Chemosphere, 41, 1457–1462.CrossRefGoogle Scholar
  12. 12.
    Bajaj, M., Gallert, C., & Winter, J. (2008). Chemosphere, 73, 705–710.CrossRefGoogle Scholar
  13. 13.
    Beristain-Montiel, L., Gómez, J., Monroy, O., Cuervo-López, F., & Ramírez-Vives, F. (2012). Water Science Technology, 65(10), 1721–1728.CrossRefGoogle Scholar
  14. 14.
    Boyd, S., & Shelton, D. (1984). Applied and Environmental Microbiology, 47, 272–277.Google Scholar
  15. 15.
    Farrell, A., & Quilty, B. (2002). Water Research, 36, 2443–2450.CrossRefGoogle Scholar
  16. 16.
    Moreno, G., & Buitrón, G. (2004). Bioresourse Technology, 94, 215–218.CrossRefGoogle Scholar
  17. 17.
    Lanthier, M., Juteau, P., Lépine, F., Beaudet, R., & Villemur, R. (2005). Applied and Environmental Microbiology, 71, 1058–1065.CrossRefGoogle Scholar
  18. 18.
    Beristain-Montiel, L., Gómez-Hernández, J., Monroy-Hermosillo, O., Cuervo-López, F., & Ramírez-Vives, F. (2010). Water Science and Technology, 62(8), 1791–1797.CrossRefGoogle Scholar
  19. 19.
    Tartakovsky, B., Manuel, M.-F., Beaumier, D., Greer, C. W., & Guiot, S. R. (2001). Biotechnology and Bioengineering, 73(6), 476–483.CrossRefGoogle Scholar
  20. 20.
    Sahinkaya, E., & Dilek, F. B. (2005). Environmental Research, 99, 243–252.CrossRefGoogle Scholar
  21. 21.
    Mohn, H., Puhakka, J. A., & Ferguson, J. F. (1999). Environmental Technology, 20, 909–920.CrossRefGoogle Scholar
  22. 22.
    Atuanya, E. I., & Chakrabarti, T. (2003). Environmental Monitoring Assessment, 83, 283–294.CrossRefGoogle Scholar
  23. 23.
    Martínez-Gutiérrez, E., González-Márquez, H., Martínez-Hernández, S., Texier, A.-C., Cuervo-López, F., & Gómez, J. (2012). Environmental Technology, 33(12), 1375–1382.CrossRefGoogle Scholar
  24. 24.
    Ye, F.-x., & Shen, D.-s. (2004). Chemosphere, 54, 1573–1580.CrossRefGoogle Scholar
  25. 25.
    Wang, S.-J., & Loh, K. C. (1999). Biodegradation, 10, 261–269.CrossRefGoogle Scholar
  26. 26.
    Tarighian, A., Hill, G., Headley, J., & Pedras, S. (2003). Clean Technologies and Environmental Policy, 5, 61–65.Google Scholar
  27. 27.
    Monsalvo, M. V., Tobajas, M., Mohedano, A. F., & Rodriguez, J. J. (2012). Journal of Chemical Technology Biotechnology, 87, 1270–1275.CrossRefGoogle Scholar
  28. 28.
    Martínez-Hernández, S., Olguín, E., Gómez, J., & Cuervo-López, F. (2009). Archives of Environmental Contamination and Toxicology, 57, 679–687.CrossRefGoogle Scholar
  29. 29.
    APHA. (1998). Standard methods for examination of water and wastewater (20th ed.). Washington: American Public Health Association.Google Scholar
  30. 30.
    Hintze, J. (2001). Number Cruncher Statistical System (NCSS). Kaysville: NCSS.Google Scholar
  31. 31.
    Lee, C.-Y., & Lee, Y.-P. (2007). World Journal of Microbiology and Biotechnology, 23, 383–391.CrossRefGoogle Scholar
  32. 32.
    Heipieper, H.-J., Diefenbach, R., & Keweloh, H. (1992). Applied and Environmental Microbiology, 58(6), 1847–1852.Google Scholar
  33. 33.
    Jiang, H.-L., Tay, J.-H., & Tay, S. T.-L. (2004). Applied Microbiology and Biotechnology, 63, 602–608.CrossRefGoogle Scholar
  34. 34.
    Dercová, K., Certik, M., Mal’ová, A., & Sejácová, Z. (2004). International Biodeterioration and Biodegradation, 54, 251–254.CrossRefGoogle Scholar
  35. 35.
    Radniecki, T. S., Dolan, M. E., & Semprini, L. (2008). Environmental Science and Technology, 42, 4093–4098.CrossRefGoogle Scholar
  36. 36.
    Chang, B. V., Zheng, J. X., & Yujan, S. Y. (1996). Chemosphere, 33, 313–320.CrossRefGoogle Scholar
  37. 37.
    Aguilar, A., Casas, C., Lafuente, J., & Lema, J. M. (1995). Water Research, 29, 505–509.CrossRefGoogle Scholar
  38. 38.
    Puyol, D., Mohedano, A. F., Sanz, J. L., & Rodríguez, J. J. (2009). Chemosphere, 76, 1192–1198.CrossRefGoogle Scholar
  39. 39.
    Loh, K.-C., & Wang, S.-J. (1998). Biodegradation, 8, 329–338.CrossRefGoogle Scholar
  40. 40.
    Costello, D. J., Greenfield, P. F., & Lee, P. L. (1991). Water Research, 25(7), 859–871.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Emir Martínez-Gutiérrez
    • 1
  • Anne-Claire Texier
    • 1
  • Flor de María Cuervo-López
    • 1
  • Jorge Gómez
    • 1
    Email author
  1. 1.Departamento de BiotecnologíaUniversidad Autónoma Metropolitana-IztapalapaIztapalapaMexico

Personalised recommendations