Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2131–2152 | Cite as

Enzyme-Mediated Bacterial Biodegradation of an Azo Dye (C.I. Acid Blue 113): Reuse of Treated Dye Wastewater in Post-Tanning Operations

  • T. Senthilvelan
  • J. KanagarajEmail author
  • R. C. Panda
Article

Abstract

“Dyeing” is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.

Keywords

Azoreductase Azo dye degradation Mathematical modeling GC-MS Mass (ESI) FT-IR Pollution reduction 

Notes

Acknowledgments

One of the authors, T. Senthilvelan, thanks Anna University, Chennai, for the award of Anna Centenary Research Fellowship (ACRF).

References

  1. 1.
    Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Bioresource Technology, 77(3), 247–255.CrossRefGoogle Scholar
  2. 2.
    Khalid, A., Batool, S., Siddique, M. T., Nazli, Z. H., Mahmood, R. B. S., & Arshad, M. (2011). Soil and Environment, 30(1), 1–6.Google Scholar
  3. 3.
    Viral, S., & Kunjal, P. (2012). Research Journal of Biotechnology, 7(2), 50–57.Google Scholar
  4. 4.
    Stolz, A. (2001). Applied Microbiology and Biotechnology, 56, 69–80.CrossRefGoogle Scholar
  5. 5.
    Solis, M., Solis, A., Perez, H. I., Manjarrez, N., & Flores, M. (2012). Process Biochemistry, 47, 1723–1748.CrossRefGoogle Scholar
  6. 6.
    Ong, S.-T., Keng, P.-S., Lee, W.-N., Ha, S.-T., & Hung, Y.-T. (2011). Water, 3, 157–176.CrossRefGoogle Scholar
  7. 7.
    Kanagaraj, J., & Mandal, A. B. (2012). Environmental Science and Pollution Research, 19, 42–52.CrossRefGoogle Scholar
  8. 8.
    Kanagaraj, J., & Panda, R. C. (2011). Industrial & Engineering Chemistry Research, 50(22), 12400–12408.CrossRefGoogle Scholar
  9. 9.
    Pandey, A., Singh, P., & Iyengar, L. (2007). International Biodeterioration and Biodegradation, 59, 73–84.CrossRefGoogle Scholar
  10. 10.
    Mansour, H. B., Corroler, D., Barillier, D., Ghedira, K., Chekir, L., & Mosrati, R. (2009). Annals of Microbiology, 59(1), 9–15.CrossRefGoogle Scholar
  11. 11.
    Franciscon, E., Zille, A., Fantinatti-Garboggini, F., Silva, I. S., Cavaco-Paulo, A., & Durrant, L. R. (2009). Process Biochemistry, 44, 446–452.CrossRefGoogle Scholar
  12. 12.
    Vijaya, P. P., Padmavathy, P., & Sandhya, S. (2003). Industrial Journal of Biotechnology, 2, 259–263.Google Scholar
  13. 13.
    Vilaseca, M., Gutie, M. C., Grimau, V. L., Mesas, M. L., & Crespi, M. (2010). Water Environment Research, 82, 176–181.CrossRefGoogle Scholar
  14. 14.
    Andleeb, S., Atiq, N., Ali, M. I., Hussnain, R. R., Shafique, M., Ahmad, B., Ghumro, P. B., Hussain, M., Hameed, A., & Ahmad, S. (2010). International Journal of Agricultural Biology, 12, 256–260.Google Scholar
  15. 15.
    Erkurt, E. A., Unyayar, A., & Kumbur, H. (2007). Process Biochemistry, 42, 1429–1435.CrossRefGoogle Scholar
  16. 16.
    Ghodake, G., Jadhav, S., Dawkar, V., & Govindwar, S. (2009). International Biodeterioration and Biodegradation, 63, 433–439.CrossRefGoogle Scholar
  17. 17.
    Khalid, A., Arshad, M., & Crowley, D. E. (2009). Water Research, 43, 1110–1116.CrossRefGoogle Scholar
  18. 18.
    Chen, H. (2006). Current Protein and Peptide Science, 7(2), 101–111.CrossRefGoogle Scholar
  19. 19.
    Zeng, X., Cai, Y., Liao, X., Zeng, X., Luo, S., & Zhang, D. (2012). Process Biochemistry, 47l, 160–163.CrossRefGoogle Scholar
  20. 20.
    Maier, J., Kandelbauer, A., Erlacher, A., Cavaco-Paulo, A., & Gubitz, G. M. (2004). Applied and Environmental Microbiology, 70(2), 837–844.CrossRefGoogle Scholar
  21. 21.
    Kanagaraj, J., Senthilvelan, T., & Mandal, A. B. (2012). Clean Technologies and Environmental Policy, 14, 565–572.CrossRefGoogle Scholar
  22. 22.
    Niebischa, C. H., Malinowski, A. K., Schadeckb, R., Mitchell, D. A., Kava-Cordeiroc, V., & Pabaa, J. (2010). Journal of Hazardous Materials, 180, 316–322.CrossRefGoogle Scholar
  23. 23.
    Parshetti, G., Kalme, S., Saratale, G., & Govindwar, S. (2006). Acta Chimica Slovenica, 53, 492–498.Google Scholar
  24. 24.
    Zhang, M. M., Chen, W. M., Chen, B. Y., Chang, C. T., & Hsueh, C. C. (2010). Bioresource Technology, 101, 2651–2656.CrossRefGoogle Scholar
  25. 25.
    McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I. M., Marchant, R., & Smyth, W. F. (2001). Applied Microbiology and Biotechnology, 56(1–2), 81–87.CrossRefGoogle Scholar
  26. 26.
    Kalpana, G., Velmurugan, N., Hong Shim, J., Byung-Teak, O. H., Kalaiselvi, S., & Lee, Y. S. (2012). Journal of Environmental Management, 111, 142–149.CrossRefGoogle Scholar
  27. 27.
    Senthilvelan, T., Kanagaraj, J., Panda, R. C., & Mandal, A. B. (2014). Clean Technologies and Environmental Policy, 16, 113–126.CrossRefGoogle Scholar
  28. 28.
    Eaton, A. D., & Franson, M. A. H. (2005). The American Public Health Association (APHA), (22nd edition).Google Scholar
  29. 29.
    Zimmermann, T., Gasser, F., Kulla, H. G., & Leisinger, T. (1984). Archives of Microbiology, 138(1), 37–43.CrossRefGoogle Scholar
  30. 30.
    Chen, H., Hopper, S. L., & Cerniglia, C. E. (2005). Microbiology, 151, 1433–1441.CrossRefGoogle Scholar
  31. 31.
    Hsueh, C. C., Chen, B. Y., & Yen, C. Y. (2009). Journal of Hazardous Materials, 167, 995–1001.CrossRefGoogle Scholar
  32. 32.
    Senthilvelan, T., Kanagaraj, J., & Mandal, A. B. (2012). Clean Technologies and Environmental Policy, 14, 889–897.CrossRefGoogle Scholar
  33. 33.
    Hsueh, C. C., & Chen, B. Y. (2008). Journal of Hazardous Materials, 154, 703–710.CrossRefGoogle Scholar
  34. 34.
    Elisangela, F., Andrea, Z., Fabio, D. G., Cristiano, R. M., Regina, D. L., & Artur, C. (2009). International Biodeterioration and Biodegradation, 63, 280–288.CrossRefGoogle Scholar
  35. 35.
    Leelakriangsak, M., & Borisut, S. (2012). Songklanakarin Journal of Science and Technology, 34(5), 509–516.Google Scholar
  36. 36.
    Seesuriyachan, P., Kuntiya, A., Techapun, C., Chaiyaso, T., Hanmuangjai, P., & Leksawasdi, N. (2011). Maejo International Journal of Science and Technology, 5(01), 32–46.Google Scholar
  37. 37.
    Chen, H., Xu, H., Heinze, T. M., & Cerniglia, C. E. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 1459–1466.CrossRefGoogle Scholar
  38. 38.
    Yang, X. Q., Zhao, X. X., Liu, C. Y., Zheng, Y., & Qian, S. J. (2009). Process Biochemistry, 44, 1185–1189.CrossRefGoogle Scholar
  39. 39.
    Syed, M. A., Sim, H. K., Khalid, A., & Shukor, M. Y. (2009). Journal of Environmental Biology, 30(1), 89–92.Google Scholar
  40. 40.
    Bhatt Nikhil, S., Dimple, R. V., & Nishant, S. J. (2012). International Journal of Research in Bioscience, 1(1), 29–41.Google Scholar
  41. 41.
    Rigo, M., & Alegre, R. M. (2004). Folia Microbiology, 49, 41–45.CrossRefGoogle Scholar
  42. 42.
    Agarry, S. E., Solomon, B. O., & Layokun, S. K. (2008). African Journal of Biotechnology, 7, 2409–2416.Google Scholar
  43. 43.
    Dey, S., & Mukherjee, S. (2010). International Journal of Water Resource and Environmental Engineering, 2, 40–49.Google Scholar
  44. 44.
    Ayed, L., Khelifi, E., Jannet, H. B., Miladi, H., Cheref, A., Achour, S., & Bakhrouf, A. (2010). Chemical Engineering Journal, 165(1), 200–208.CrossRefGoogle Scholar
  45. 45.
    Chaube, P., Indurkar, H., & Moghe, S. (2010). Asiatic Journal of Biotechnology, 1, 45–56.Google Scholar
  46. 46.
    Kalyani, D. C., Telke, A. A., Dhanve, R. S., & Jadhav, J. P. (2009). Journal of Hazardous Materials, 163, 735–742.CrossRefGoogle Scholar
  47. 47.
    Parshetti, G. K., Telke, A. A., Kalyani, D. C., & Govindwar, S. P. (2010). Journal of Hazardous Materials, 176, 503–509.CrossRefGoogle Scholar
  48. 48.
    Ponraj, M., Gokila, K., & Zambare, V. (2011). International Journal of Advanced Biotechnology Research, 2, 168–177.Google Scholar
  49. 49.
    Modi, H. A., Rajput, G., & Ambasana, C. (2010). Bioresource Technology, 101(16), 6580–6583.CrossRefGoogle Scholar
  50. 50.
    Marshal, A., Manich, A. M., Castellar, M. D. D., & Cot, J. (2003). Journal of American Leather Chemical Association, 98, 132–138.Google Scholar
  51. 51.
    Dayanandan, A., Kanagaraj, J., Sounderraj, L., Govindaraju, R., & Suseela Rajkumar, G. (2003). Journal of Cleaner Production, 11, 533–536.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Leather Processing DivisionCSIR-CLRIChennaiIndia
  2. 2.Chemical Engineering DivisionCSIR-CLRIChennaiIndia

Personalised recommendations