Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2031–2047 | Cite as

Characterization and Stability Analysis of Biopolymeric Matrices Designed for Phage-Controlled Release

  • Cecilia Dini
  • Germán A. Islan
  • Guillermo R. CastroEmail author
Article

Abstract

Alginate and low methoxylated pectin gel matrices emulsified with oleic acid were studied for phage oral delivery. Matrix structural analysis revealed that emulsified pectin (EP) gel microbeads were harder and more cohesive than those of emulsified alginate (EA). EP showed high swelling capacity and slower matrix degradation in aqueous media, suggesting that oleic acid is mainly located on the surface of EP microbeads. EA and EP matrices having p-nitrophenyl palmitate (C-16 ester) as tracer dissolved into oleic acid and in the presence of lipase confirmed this hypothesis which is consistent with EP better phage protective capability. Surface analysis of gel microbeads by scanning electron microscopy revealed strong differences between EP and EA gel microbeads. Phage release kinetics was tested using semi-empirical mathematical models. Experimental curve best fitted the Korsmeyer–Peppas model, predicting transport mechanisms according to the high swelling and degradation of EP. The proposed encapsulation model represents an innovative technology for phage therapy, which can be extrapolated to other therapeutic purposes, using a simple environmentally friendly synthesis procedure and cheap food-grade raw materials.

Keywords

Modeling Pectin Alginate Biopolymers Microencapsulation Phage therapy 

Notes

Acknowledgments

The present work was supported by grants of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0214), Agencia Nacional de Promoción Científica y Técnica (ANPCyT-UNLP, PRH 5.2 and PICT2011-2116), and Universidad Nacional de La Plata (UNLP X/545) to GRC is gratefully acknowledged.

Supplementary material

12010_2014_1152_MOESM1_ESM.docx (441 kb)
ESM 1 (DOCX 441 kb)

References

  1. 1.
    Misal, R., Waghmare, A., & Aquell, S. (2013). Recent advances in microencapsulation: a review. International Journal of Pharmacy and Technology, 5, 2520–2535.Google Scholar
  2. 2.
    Sriamornsak, P. (2011). Application of pectin in oral drug delivery. Expert Opinion on Drug Delivery, 8, 1009–1023.CrossRefGoogle Scholar
  3. 3.
    Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in Polymer Science, 37, 106–126.CrossRefGoogle Scholar
  4. 4.
    Plaschina, I. G., Braudo, E. E., & Tolstoguzov, V. B. (1978). Circular-dichroism studies of pectin solutions. Carbohydrate Research, 60, 1–8.CrossRefGoogle Scholar
  5. 5.
    Braccini, I., & Pérez, S. (2001). Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2, 1089–1096.CrossRefGoogle Scholar
  6. 6.
    Langer, R., & Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AIChE Journal, 49, 2990–3006.CrossRefGoogle Scholar
  7. 7.
    Schoener, C. A., & Peppas, N. A. (2013). Oral delivery of chemotherapeutic agents: background and potential of drug delivery systems for colon delivery. Journal of Drug Delivery Science and Technology, 22, 459–468.Google Scholar
  8. 8.
    Buwalda, S. J., Boere, K. W. M., Dijkstra, P. J., et al. (2014). Hydrogels in a historical perspective: from simple networks to smart materials. Journal of Controlled Release. doi: 10.1016/j.jconrel.2014.03.052.Google Scholar
  9. 9.
    Vashist, A., Vashist, A., Gupta, Y. K., & Ahmad, S. (2014). Recent advances in hydrogel based drug delivery systems for the human body. Journal of Material Chemistry B, 2, 147–166.CrossRefGoogle Scholar
  10. 10.
    Dini, C., & De Urraza, P. J. (2010). Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and Shiga toxin-producing E. coli (EHEC and STEC) in cattle. Journal of Applied Microbiology, 109, 873–887.CrossRefGoogle Scholar
  11. 11.
    Dini, C., Islan, G. A., de Urraza, P. J., & Castro, G. R. (2012). Novel biopolymer matrices for microencapsulation of phages: enhanced protection against acidity and protease activity. Macromolecular Bioscience, 12, 1200–1208.CrossRefGoogle Scholar
  12. 12.
    Bourne, M. C., & Comstock, S. H. (1981). Effect of degree of compression on texture profile analysis. Journal of Texture Studies, 12, 201–216.CrossRefGoogle Scholar
  13. 13.
    Baigorí, M. D., Castro, G. R., & Siñeriz, F. (1996). Purification and characterization of an extracellular esterase from Bacillus subtilis MIR-16. Biotechnology and Applied Biochemistry, 24, 7–11.Google Scholar
  14. 14.
    Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13, 123–133.CrossRefGoogle Scholar
  15. 15.
    Almeida, I. F., & Bahia, M. F. (2006). Evaluation of the physical stability of two oleogels. International Journal of Pharmaceutics, 327, 73–77.CrossRefGoogle Scholar
  16. 16.
    Barrangou, L. M., Drake, M., Daubert, C. R., & Foegeding, E. A. (2006). Textural properties of agarose gels. II. Relationships between rheological properties and sensory texture. Food Hydrocolloids, 20, 196–203.CrossRefGoogle Scholar
  17. 17.
    Foegeding, E. A. (2007). Rheology and sensory texture of biopolymer gels. Current Opinion in Colloid Interface Science, 12, 242–250.CrossRefGoogle Scholar
  18. 18.
    Sanderson G.R. (1990). In: Harris P (Ed.) Food Gels. Gellan Gum (pp 201–232). Elsevier Applied Food Science Series.Google Scholar
  19. 19.
    Staniforth, J. N., Baichwal, A. R., Hart, J. P., & Heng, P. W. S. (1998). Effect of addition of water on the rheological and mechanical properties of microcrystalline celluloses. International Journal of Pharmaceutics, 41, 231–236.CrossRefGoogle Scholar
  20. 20.
    Castro, G. R., Bora, E., Panilaitis, B., & Kaplan, D. L. (2006). In C. Scholz & K. Khemani (Eds.), Degradable polymers and materials, vol 939 (pp 14–29). Emulsan-alginate microbeads as a new vehicle for protein delivery. Washington: ACS Symposium Series, American Chemical Society.Google Scholar
  21. 21.
    Shibayama, M., Ikkai, F., Inamoto, S., Nomura, S., & Han, C. C. (1996). pH and salt concentration dependence of the microstructure of poly(N‐isopropylacrylamide‐co‐acrylic acid) gels. Journal of Chemical Physics, 105, 4358–4366.CrossRefGoogle Scholar
  22. 22.
    Brannon-Peppas, L. and Peppas, N. A., in The equilibrium swelling behavior of porous and non-porous hygrogels. Absorbent Polymer Technology, ed. L. Brannon-Peppas and R. S. Harland. Elsevier, 1990, p. 67.Google Scholar
  23. 23.
    Voo, W. P., Ravindra, P., Tey, B. T., & Chan, E. S. (2011). Comparison of alginate and pectin based beads for production of poultry probiotic cells. Journal of Bioscience and Bioengineering, 111, 294–299.CrossRefGoogle Scholar
  24. 24.
    Wang, Y. W., Wu, Q., & Chen, G. Q. (2005). Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application. Biomacromolecules, 6, 566–571.CrossRefGoogle Scholar
  25. 25.
    Thakur, B. R., Singh, R. K., Handa, A. K., & Rao, M. A. (1997). Chemistry and uses of pectin—a review. Critical Reviews in Food Science and Nutrition, 37, 47–73.CrossRefGoogle Scholar
  26. 26.
    Koç, M. L., Özdemir, Ü., & İmren, D. (2008). Prediction of the pH and the temperature-dependent swelling behavior of Ca2+-alginate hydrogels by artificial neural networks. Chemical Engineering Science, 63, 2913–2919.CrossRefGoogle Scholar
  27. 27.
    Islan, G. A., Bosio, V. E., & Castro, G. R. (2013). Alginate lyase and ciprofloxacin co‐immobilization on biopolymeric microspheres for cystic fibrosis treatment. Macromolecular Bioscience, 13, 1238–1248.CrossRefGoogle Scholar
  28. 28.
    Christensen, B. E. (2011). Alginates as biomaterials in tissue engineering. Carbohydrate Chemistry: Chemical and Biological Approaches, 37, 227–258.Google Scholar
  29. 29.
    Vandamme, T. F., Lenourry, A., Charreau, C., & Chaumeil, J. C. (2002). The use of polysaccharides to target drugs to the colon. Carbohydrate Polymers, 48, 219–231.CrossRefGoogle Scholar
  30. 30.
    Lin, C. C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: network design and mathematical modeling. Advanced Drug Delivery Reviews, 58, 1379–1408.CrossRefGoogle Scholar
  31. 31.
    Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5, 37–42.CrossRefGoogle Scholar
  32. 32.
    Siepmann, J., & Peppas, N. A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48, 139–157.CrossRefGoogle Scholar
  33. 33.
    Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Polonica Pharmaceutica, 67, 217–223.Google Scholar
  34. 34.
    Singhvi, G., & Singh, M. (2011). Review: in-vitro drug release characterization models. International Journal of Pharmaceutical Studies Research, 2, 77–84.Google Scholar
  35. 35.
    Pothakamury, U. R., & Barbosa-Cánovas, G. V. (1995). Fundamental aspects of controlled release in foods. Trends in Food Science and Technology, 6, 397–406.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Cecilia Dini
    • 1
  • Germán A. Islan
    • 2
  • Guillermo R. Castro
    • 2
    Email author
  1. 1.Center for Research and Development in Food Cryotechnology (CIDCA, UNLP- CONICET)CCT La PlataLa PlataArgentina
  2. 2.Nanobiomaterials laboratory, Institute of Applied Biotechnology (CINDEFI, UNLP - CONICET CCT La Plata), Department of Chemistry, School of SciencesUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations