Skip to main content
Log in

Effects of Pellet Characteristics on L-Lactic Acid Fermentation by R. oryzae: Pellet Morphology, Diameter, Density, and Interior Structure

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of pellet morphology, diameter, density, and interior structure on L-lactic acid fermentation by Rhizopus oryzae were characterized for different inoculum sizes and concentrations of peptone and CaCO3. Inoculum size was the most important factor determining pellet formation and diameter. The diameter decreased with increasing inoculum size, and larger pellets were observed for lower inoculum sizes. Peptone concentration had the greatest effect on pellet density, which increased with increasing peptone concentration. L-lactic acid production depended heavily on pellet density but not on pellet diameter. Low-density pellets formed easily under conditions of low peptone concentration and often had a relatively hollow structure, with a thin condensed layer surrounding the pellet and an extraordinarily loose biomass or hollow center. As expected, this structure greatly decreased production. The production of L-lactic acid increased until the density reached a certain level (50–60 kg/m3), in which the compact part was distributed homogeneously in the thick outer layer of the pellet and loose in the central layer. Homogeneously structured, denser pellets had limited mass transfer, causing a lower overall turnover rate. However, the interior structure remained nearly constant throughout all fermentation phases for pellets with the same density. CaCO3 concentration only had a slight influence on pellet diameter and density, probably because it increases spore germination and filamentous hypha extension. This work also provides a new analysis method to quantify the interior structure of pellets, thus giving insight into pellet structure and its relationship with productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang, Z. Y., Jin, B. J., & Kelly, M. (2007). Biochemical Engineering Journal, 35, 251–263.

    Article  CAS  Google Scholar 

  2. Bai, D. M., Jia, M. Z., Zhao, X. M., Ban, R., Shen, F., Li, X. G., & Xu, S. M. (2003). Chemical Engineering Science, 58, 785–791.

    Article  CAS  Google Scholar 

  3. Liao, W., Liu, Y., & Chen, S. L. (2007). Applied Biochemistry and Biotechnology, 136–1401, 689–701.

    Google Scholar 

  4. Papagianni, M. (2004). Biotechnology Advances, 22(3), 189–259.

    Article  CAS  Google Scholar 

  5. Liao, W., Liu, Y., Frear, C., & Chen, S. L. (2007). Bioresource Technology, 98(18), 3415–3423.

    Article  CAS  Google Scholar 

  6. Žnidaršič, P., Komel, R., & Pavco, A. (2000). World Journal of Microbiology and Biotechnology, 16, 589–593.

    Article  Google Scholar 

  7. Liu, Y., Liao, W., & Chen, S. (2008). Biotechnology and Bioengineering, 99(1), 117–128.

    Article  CAS  Google Scholar 

  8. Fu, Y. Q., Xu, Q., Li, S., Huang, H., & Chen, Y. (2009). World Journal of Microbiology and Biotechnology, 25(10), 1871–1876.

    Article  CAS  Google Scholar 

  9. Zhou, Y., Du, J. X., & Tsao, G. T. (2000). Applied Biochemistry and Biotechnology, 84–86, 779–789.

    Article  Google Scholar 

  10. Yang, C. W., Lu, Z. J., & Tsao, G. T. (1995). Biotechnol Bioeng, 51/52, 57–71.

    Google Scholar 

  11. Metz, B., & Kossen, N. W. F. (1977). Biotechnology and Bioengineering, 19(6), 781–799.

    Article  CAS  Google Scholar 

  12. Roa Engel, C. A., van Gulik, W. M., Marang, L., van Wielen, L. A. M., & Straathof, A. J. J. (2011). Enzyme and Microbial Technology, 48, 39–47.

    Article  CAS  Google Scholar 

  13. Sitanggang, A. B., Wu, H. S., Wang, S. S., & Ho, Y. C. (2010). Bioresource Technology, 101, 3595–3601.

    Article  CAS  Google Scholar 

  14. Braun, S., & Vecht-Lifshitz, S. E. (1991). Tibtech-February, 9, 63–68.

    Article  Google Scholar 

  15. Wittier, R., Baumgartl, H., Lubbers, D. W., & SchUgerl, K. (1986). Biotechnology and Bioengineering, 28, 1024–1036.

    Article  CAS  Google Scholar 

  16. Žnidaršič, P., & Pavco, A. (2001). Food Technology and Biotechnology, 39(3), 237–252.

    Google Scholar 

  17. Žnidaršič, P. (2006). Chemical and Biochemical Engineering Quarterly, 20(3), 275–280.

    Google Scholar 

  18. Fu, Y. Q., Li, S., Chen, Y., Xu, Q., Huang, H., & Sheng, X. Y. (2010). Applied Biochemistry and Biotechnology, 162, 1031–1038.

    Article  CAS  Google Scholar 

  19. Hille, A., Neu, T. R., Hempel, D. C., & Horn, H. (2009). Biotechnology and Bioengineering, 103(6), 1202–1213.

    Article  CAS  Google Scholar 

  20. van Suijdam, J. C., Kossen, N. W. F., & Paul, P. G. (1980). European Journal of Applied Microbiology and Biotechnology, 10, 211–221.

    Article  Google Scholar 

  21. Papagianni, M., & Mattey, M. (2006). Microbial Cell Factories, 5(3), 1–12.

    Google Scholar 

  22. Byrne, G. S., & Ward, O. P. (1989). Biotechnology and Bioengineering, 33, 912–914.

    Article  CAS  Google Scholar 

  23. Roson, G. D., Wiebe, M. G., & Trinci, A. P. J. (1991). Experimental Mycology, 15, 263–272.

    Article  Google Scholar 

  24. Pera, L. M., & Callieri, D. A. (1997). Folia Microbiologica, 42(6), 551–556.

    Article  CAS  Google Scholar 

  25. Roson, G. D., Wiebe, M. G., & Trinci, A. P. J. (1991). Mycological Research, 95(5), 561–565.

    Article  Google Scholar 

  26. Pirt, S. J., & Callow, D. S. (1959). Nature, 184, 307–310.

    Article  CAS  Google Scholar 

  27. Driouch, H., Sommer, B., & Wittmann, C. (2010). Biotechnology and Bioengineering, 105(6), 1058–1068.

    CAS  Google Scholar 

  28. Villena, G. K., Fujikawa, T., Tsuyumu, S., & Gutiérrez-Correa, M. (2010). Bioresource Technology, 101, 1920–1926.

    Article  CAS  Google Scholar 

  29. Hille, A., Neu, T. R., Hempel, D. C., & Horn, H. (2005). Biotechnology and Bioengineering, 92, 614–623.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21106091), Zhejiang Provincial Natural Science Foundation of China (LQ12B06004), and the National High Technology Research and Development Program of China (Grant No. 2011AA02A206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Qian Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, YQ., Yin, LF., Zhu, HY. et al. Effects of Pellet Characteristics on L-Lactic Acid Fermentation by R. oryzae: Pellet Morphology, Diameter, Density, and Interior Structure. Appl Biochem Biotechnol 174, 2019–2030 (2014). https://doi.org/10.1007/s12010-014-1146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1146-1

Keywords

Navigation