Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2019–2030 | Cite as

Effects of Pellet Characteristics on L-Lactic Acid Fermentation by R. oryzae: Pellet Morphology, Diameter, Density, and Interior Structure

  • Yong-Qian FuEmail author
  • Long-Fei Yin
  • Hua-Yue Zhu
  • Ru Jiang
  • Shuang Li
  • Qing Xu


The effects of pellet morphology, diameter, density, and interior structure on L-lactic acid fermentation by Rhizopus oryzae were characterized for different inoculum sizes and concentrations of peptone and CaCO3. Inoculum size was the most important factor determining pellet formation and diameter. The diameter decreased with increasing inoculum size, and larger pellets were observed for lower inoculum sizes. Peptone concentration had the greatest effect on pellet density, which increased with increasing peptone concentration. L-lactic acid production depended heavily on pellet density but not on pellet diameter. Low-density pellets formed easily under conditions of low peptone concentration and often had a relatively hollow structure, with a thin condensed layer surrounding the pellet and an extraordinarily loose biomass or hollow center. As expected, this structure greatly decreased production. The production of L-lactic acid increased until the density reached a certain level (50–60 kg/m3), in which the compact part was distributed homogeneously in the thick outer layer of the pellet and loose in the central layer. Homogeneously structured, denser pellets had limited mass transfer, causing a lower overall turnover rate. However, the interior structure remained nearly constant throughout all fermentation phases for pellets with the same density. CaCO3 concentration only had a slight influence on pellet diameter and density, probably because it increases spore germination and filamentous hypha extension. This work also provides a new analysis method to quantify the interior structure of pellets, thus giving insight into pellet structure and its relationship with productivity.


Density Interior structure L-lactic acid Pellet characteristics Rhizopus oryzae 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 21106091), Zhejiang Provincial Natural Science Foundation of China (LQ12B06004), and the National High Technology Research and Development Program of China (Grant No. 2011AA02A206).


  1. 1.
    Zhang, Z. Y., Jin, B. J., & Kelly, M. (2007). Biochemical Engineering Journal, 35, 251–263.CrossRefGoogle Scholar
  2. 2.
    Bai, D. M., Jia, M. Z., Zhao, X. M., Ban, R., Shen, F., Li, X. G., & Xu, S. M. (2003). Chemical Engineering Science, 58, 785–791.CrossRefGoogle Scholar
  3. 3.
    Liao, W., Liu, Y., & Chen, S. L. (2007). Applied Biochemistry and Biotechnology, 136–1401, 689–701.Google Scholar
  4. 4.
    Papagianni, M. (2004). Biotechnology Advances, 22(3), 189–259.CrossRefGoogle Scholar
  5. 5.
    Liao, W., Liu, Y., Frear, C., & Chen, S. L. (2007). Bioresource Technology, 98(18), 3415–3423.CrossRefGoogle Scholar
  6. 6.
    Žnidaršič, P., Komel, R., & Pavco, A. (2000). World Journal of Microbiology and Biotechnology, 16, 589–593.CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Liao, W., & Chen, S. (2008). Biotechnology and Bioengineering, 99(1), 117–128.CrossRefGoogle Scholar
  8. 8.
    Fu, Y. Q., Xu, Q., Li, S., Huang, H., & Chen, Y. (2009). World Journal of Microbiology and Biotechnology, 25(10), 1871–1876.CrossRefGoogle Scholar
  9. 9.
    Zhou, Y., Du, J. X., & Tsao, G. T. (2000). Applied Biochemistry and Biotechnology, 84–86, 779–789.CrossRefGoogle Scholar
  10. 10.
    Yang, C. W., Lu, Z. J., & Tsao, G. T. (1995). Biotechnol Bioeng, 51/52, 57–71.Google Scholar
  11. 11.
    Metz, B., & Kossen, N. W. F. (1977). Biotechnology and Bioengineering, 19(6), 781–799.CrossRefGoogle Scholar
  12. 12.
    Roa Engel, C. A., van Gulik, W. M., Marang, L., van Wielen, L. A. M., & Straathof, A. J. J. (2011). Enzyme and Microbial Technology, 48, 39–47.CrossRefGoogle Scholar
  13. 13.
    Sitanggang, A. B., Wu, H. S., Wang, S. S., & Ho, Y. C. (2010). Bioresource Technology, 101, 3595–3601.CrossRefGoogle Scholar
  14. 14.
    Braun, S., & Vecht-Lifshitz, S. E. (1991). Tibtech-February, 9, 63–68.CrossRefGoogle Scholar
  15. 15.
    Wittier, R., Baumgartl, H., Lubbers, D. W., & SchUgerl, K. (1986). Biotechnology and Bioengineering, 28, 1024–1036.CrossRefGoogle Scholar
  16. 16.
    Žnidaršič, P., & Pavco, A. (2001). Food Technology and Biotechnology, 39(3), 237–252.Google Scholar
  17. 17.
    Žnidaršič, P. (2006). Chemical and Biochemical Engineering Quarterly, 20(3), 275–280.Google Scholar
  18. 18.
    Fu, Y. Q., Li, S., Chen, Y., Xu, Q., Huang, H., & Sheng, X. Y. (2010). Applied Biochemistry and Biotechnology, 162, 1031–1038.CrossRefGoogle Scholar
  19. 19.
    Hille, A., Neu, T. R., Hempel, D. C., & Horn, H. (2009). Biotechnology and Bioengineering, 103(6), 1202–1213.CrossRefGoogle Scholar
  20. 20.
    van Suijdam, J. C., Kossen, N. W. F., & Paul, P. G. (1980). European Journal of Applied Microbiology and Biotechnology, 10, 211–221.CrossRefGoogle Scholar
  21. 21.
    Papagianni, M., & Mattey, M. (2006). Microbial Cell Factories, 5(3), 1–12.Google Scholar
  22. 22.
    Byrne, G. S., & Ward, O. P. (1989). Biotechnology and Bioengineering, 33, 912–914.CrossRefGoogle Scholar
  23. 23.
    Roson, G. D., Wiebe, M. G., & Trinci, A. P. J. (1991). Experimental Mycology, 15, 263–272.CrossRefGoogle Scholar
  24. 24.
    Pera, L. M., & Callieri, D. A. (1997). Folia Microbiologica, 42(6), 551–556.CrossRefGoogle Scholar
  25. 25.
    Roson, G. D., Wiebe, M. G., & Trinci, A. P. J. (1991). Mycological Research, 95(5), 561–565.CrossRefGoogle Scholar
  26. 26.
    Pirt, S. J., & Callow, D. S. (1959). Nature, 184, 307–310.CrossRefGoogle Scholar
  27. 27.
    Driouch, H., Sommer, B., & Wittmann, C. (2010). Biotechnology and Bioengineering, 105(6), 1058–1068.Google Scholar
  28. 28.
    Villena, G. K., Fujikawa, T., Tsuyumu, S., & Gutiérrez-Correa, M. (2010). Bioresource Technology, 101, 1920–1926.CrossRefGoogle Scholar
  29. 29.
    Hille, A., Neu, T. R., Hempel, D. C., & Horn, H. (2005). Biotechnology and Bioengineering, 92, 614–623.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yong-Qian Fu
    • 1
    • 2
    Email author
  • Long-Fei Yin
    • 1
  • Hua-Yue Zhu
    • 1
  • Ru Jiang
    • 1
  • Shuang Li
    • 2
  • Qing Xu
    • 2
  1. 1.Institute of Biomass Resources, Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityZhejiangPeople’s Republic of China
  2. 2.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations