Skip to main content
Log in

Effect of Phytase Application During High Gravity (HG) Maize Mashes Preparation on the Availability of Starch and Yield of the Ethanol Fermentation Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phytic acid present in raw materials used in distilling industry can form complexes with starch and divalent cations and thus limit their biological availability. The influence of the enzymatic hydrolysis of phytate complexes on starch availability during the alcoholic fermentation process using high gravity (HG) maize mashes was analyzed. Indicators of the alcoholic fermentation as well as the fermentation activity of Saccharomyces cerevisiae D-2 strain were statistically evaluated. Phytate hydrolysis improved the course of the alcoholic fermentation of HG maize mashes. The final ethanol concentration in the media supplemented with phytase applied either before or after the starch hydrolysis increased by 1.0 and 0.6 % v/v, respectively, as compared to the control experiments. This increase was correlated with an elevated fermentation yield that was higher by 5.5 and 2.0 L EtOH/100 kg of starch, respectively. Phytate hydrolysis resulted also in a statistically significant increase in the initial concentration of fermenting sugars by 14.9 mg/mL of mash, on average, which was a consequence of a better availability of starch for enzymatic hydrolysis. The application of phytase increased the attenuation of HG media fermentation thus improving the economical aspect of the ethanol fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kotarska, K., Czupryński, B., & Kłosowski, G. (2006). Journal of Food Engineering, 77, 965–971.

    Article  CAS  Google Scholar 

  2. Pereira, F. B., Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Bioresource Technology, 101, 7856–7863.

    Article  CAS  Google Scholar 

  3. Albers, E., Larsson, C., Lidén, G., Niklasson, C., & Gustafsso, L. (1996). Applied and Environmental Microbiology, 62(9), 3187–3195.

    CAS  Google Scholar 

  4. Bafrncová, P., Šmogrovičová, D., Sláviková, I., Pátková, J., & Dömény, Z. (1999). Biotechnology Letters, 21, 337–341.

    Article  Google Scholar 

  5. Azenha, M., Vasconcelos, M. T., & Moradas-Ferreira, P. (2000). Journal of Bioscience and Bioengineering, 90(2), 163–167.

    Article  CAS  Google Scholar 

  6. Kłosowski, G., Mikulski, D., Grajewski, J., & Błajet-Kosicka, A. (2010). Bioresource Technology, 101, 3147–3152.

    Article  Google Scholar 

  7. Dai, F., Wang, J., Zhang, S., Xu, Z., & Zhang, G. (2007). Food Chemistry, 105, 606–611.

    Article  CAS  Google Scholar 

  8. Steiner, T., Mosenthin, R., Zimmermann, B., Greiner, R., & Roth, S. (2007). Animal Feed Science and Technology, 133, 320–334.

    Article  CAS  Google Scholar 

  9. Fredlund, K., Isaksson, M., Rossander-Hulthén, L., Almgren, A., & Sandberg, A. S. (2006). Journal of Trace Elements in Medicine and Biology, 20(1), 49–57.

    Article  CAS  Google Scholar 

  10. Rickard, S. E., & Thompson, L. U. (1997). In F. Shaidi (Ed.), Antinutrients and phytochemicals in food (pp. 294–312). Washington: American Chemical Society.

    Chapter  Google Scholar 

  11. Thompson, L. U., Button, C. L., & Jenkins, D. J. A. (1987). American Journal of Clinical Nutrition, 46, 467–473.

    CAS  Google Scholar 

  12. Lambrechts, C., Boze, H., Moulin, G., & Galzy, P. (1992). Biotechnology Letters, 14(1), 61–66.

    Article  CAS  Google Scholar 

  13. Kumar, V., Sinha, A. K., Makkar, H. P. S., & Becker, K. (2010). Food Chemistry, 120, 945–959.

    Article  CAS  Google Scholar 

  14. Walker, G. M. (2000). Yeast: physiology and biotechnology. New York: John Wiley & Sons Ltd.

    Google Scholar 

  15. Furukawa, K., Kitano, H., Mizoguchi, H., & Hara, S. (2004). Journal of Bioscience and Bioengineering, 98(2), 107–113.

    Article  CAS  Google Scholar 

  16. Krause, E. L., Villa-García, M. J., Henry, S. A., & Walker, L. P. (2007). Industrial Biotechnology, 3(3), 260–268.

    Article  CAS  Google Scholar 

  17. Yoon, J. H., Thompson, L. U., & Jenkins, D. J. A. (1983). American Journal of Clinical Nutrition, 38, 835–842.

    CAS  Google Scholar 

  18. Sindhu, S. C., & Khetarpaul, N. (2001). Journal of Food Composition and Analysis, 14, 601–609.

    Article  CAS  Google Scholar 

  19. Sindhu, S. C., & Khetarpaul, N. (2003). Plant Foods for Human Nutrition, 58, 1–10.

    Article  Google Scholar 

  20. Lei, X. G., & Porres, J. M. (2003). Biotechnology Letters, 25, 1787–1794.

    Article  CAS  Google Scholar 

  21. Cao, L., Wang, W., Yang, C., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., & Li, D. (2007). Enzyme and Microbial Technology, 40, 497–507.

    Article  CAS  Google Scholar 

  22. Patzek, T. W. (2006). Natural Resources Research, 15(3), 205–212.

    Article  CAS  Google Scholar 

  23. Native starch. (1997) Determination of starch content. Ewers polarimetric method - ISO 10520:1997

  24. Park, H.-R., Ahn, H.-J., Kim, S.-H., Lee, C.-H., Byun, M.-W., & Lee, G.-W. (2006). Food Control, 17, 727–732.

    Article  CAS  Google Scholar 

  25. Cavell, A. J. (1955). Journal of the Science of Food and Agriculture, 6(8), 479–480.

    Article  CAS  Google Scholar 

  26. Kłosowski, G., Mikulski, D., Czupryński, B., & Kotarska, K. (2010). Journal of Bioscience and Bioengineering, 109(5), 466–471.

    Article  Google Scholar 

  27. Pradeep, P., & Reddy, O. V. S. (2010). Indian Journal of Microbiology, 50(1), 82–87.

    Article  CAS  Google Scholar 

  28. Microbiology of food and animal feeding stuffs. (2008). Horizontal method for the enumeration of yeasts and moulds—Part 1: Colony count technique in products with water activity greater than 0.95 - ISO 21527-1:2008.

  29. Alfenore, S., Molina-Jouve, C., Guillouet, S. E., Uribelarrea, J.-L., Goma, G., & Benbadis, L. (2002). Applied Microbiology and Biotechnology, 60, 67–72.

    Article  CAS  Google Scholar 

  30. Yeast. Test methods. (1997). Determination of content of phosphorus - PN-A-79005-8:1997.

  31. Kłosowski, G., & Mikulski, D. (2010). Bioresource Technology, 101, 9723–9727.

    Article  Google Scholar 

  32. Fujita, J., Fukuda, H., Yamane, Y.-i., Kizaki, Y., Shigeta, S., Ono, K., Suzuk, O., & Wakabayashi, S. (2001). Journal of Biotechnology Letters, 23, 867–871.

    Article  CAS  Google Scholar 

  33. Jackowetz, J. N., Dierschke, S., & Mira de Orduña, R. (2011). Food Research International, 44, 310–316.

    Article  CAS  Google Scholar 

  34. Roustan, J. L., & Sablayrolles, J.-M. (2002). Journal of Bioscience and Bioengineering, 93(4), 367–375.

    Article  CAS  Google Scholar 

  35. Furukawa, K., Yamada, T., Mizoguchi, H., & Hara, S. (2003). Journal of Bioscience and Bioengineering, 96(4), 380–386.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Science Centre grant (No. 2012/05/N/NZ9/02436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kłosowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikulski, D., Kłosowski, G. & Rolbiecka, A. Effect of Phytase Application During High Gravity (HG) Maize Mashes Preparation on the Availability of Starch and Yield of the Ethanol Fermentation Process. Appl Biochem Biotechnol 174, 1455–1470 (2014). https://doi.org/10.1007/s12010-014-1139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1139-0

Keywords

Navigation