Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1455–1470 | Cite as

Effect of Phytase Application During High Gravity (HG) Maize Mashes Preparation on the Availability of Starch and Yield of the Ethanol Fermentation Process

  • D. Mikulski
  • G. KłosowskiEmail author
  • A. Rolbiecka


Phytic acid present in raw materials used in distilling industry can form complexes with starch and divalent cations and thus limit their biological availability. The influence of the enzymatic hydrolysis of phytate complexes on starch availability during the alcoholic fermentation process using high gravity (HG) maize mashes was analyzed. Indicators of the alcoholic fermentation as well as the fermentation activity of Saccharomyces cerevisiae D-2 strain were statistically evaluated. Phytate hydrolysis improved the course of the alcoholic fermentation of HG maize mashes. The final ethanol concentration in the media supplemented with phytase applied either before or after the starch hydrolysis increased by 1.0 and 0.6 % v/v, respectively, as compared to the control experiments. This increase was correlated with an elevated fermentation yield that was higher by 5.5 and 2.0 L EtOH/100 kg of starch, respectively. Phytate hydrolysis resulted also in a statistically significant increase in the initial concentration of fermenting sugars by 14.9 mg/mL of mash, on average, which was a consequence of a better availability of starch for enzymatic hydrolysis. The application of phytase increased the attenuation of HG media fermentation thus improving the economical aspect of the ethanol fermentation process.


Phytase Ethanol fermentation Availability of starch Ethanol yield HG mashes 



The work was supported by the National Science Centre grant (No. 2012/05/N/NZ9/02436).


  1. 1.
    Kotarska, K., Czupryński, B., & Kłosowski, G. (2006). Journal of Food Engineering, 77, 965–971.CrossRefGoogle Scholar
  2. 2.
    Pereira, F. B., Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Bioresource Technology, 101, 7856–7863.CrossRefGoogle Scholar
  3. 3.
    Albers, E., Larsson, C., Lidén, G., Niklasson, C., & Gustafsso, L. (1996). Applied and Environmental Microbiology, 62(9), 3187–3195.Google Scholar
  4. 4.
    Bafrncová, P., Šmogrovičová, D., Sláviková, I., Pátková, J., & Dömény, Z. (1999). Biotechnology Letters, 21, 337–341.CrossRefGoogle Scholar
  5. 5.
    Azenha, M., Vasconcelos, M. T., & Moradas-Ferreira, P. (2000). Journal of Bioscience and Bioengineering, 90(2), 163–167.CrossRefGoogle Scholar
  6. 6.
    Kłosowski, G., Mikulski, D., Grajewski, J., & Błajet-Kosicka, A. (2010). Bioresource Technology, 101, 3147–3152.CrossRefGoogle Scholar
  7. 7.
    Dai, F., Wang, J., Zhang, S., Xu, Z., & Zhang, G. (2007). Food Chemistry, 105, 606–611.CrossRefGoogle Scholar
  8. 8.
    Steiner, T., Mosenthin, R., Zimmermann, B., Greiner, R., & Roth, S. (2007). Animal Feed Science and Technology, 133, 320–334.CrossRefGoogle Scholar
  9. 9.
    Fredlund, K., Isaksson, M., Rossander-Hulthén, L., Almgren, A., & Sandberg, A. S. (2006). Journal of Trace Elements in Medicine and Biology, 20(1), 49–57.CrossRefGoogle Scholar
  10. 10.
    Rickard, S. E., & Thompson, L. U. (1997). In F. Shaidi (Ed.), Antinutrients and phytochemicals in food (pp. 294–312). Washington: American Chemical Society.CrossRefGoogle Scholar
  11. 11.
    Thompson, L. U., Button, C. L., & Jenkins, D. J. A. (1987). American Journal of Clinical Nutrition, 46, 467–473.Google Scholar
  12. 12.
    Lambrechts, C., Boze, H., Moulin, G., & Galzy, P. (1992). Biotechnology Letters, 14(1), 61–66.CrossRefGoogle Scholar
  13. 13.
    Kumar, V., Sinha, A. K., Makkar, H. P. S., & Becker, K. (2010). Food Chemistry, 120, 945–959.CrossRefGoogle Scholar
  14. 14.
    Walker, G. M. (2000). Yeast: physiology and biotechnology. New York: John Wiley & Sons Ltd.Google Scholar
  15. 15.
    Furukawa, K., Kitano, H., Mizoguchi, H., & Hara, S. (2004). Journal of Bioscience and Bioengineering, 98(2), 107–113.CrossRefGoogle Scholar
  16. 16.
    Krause, E. L., Villa-García, M. J., Henry, S. A., & Walker, L. P. (2007). Industrial Biotechnology, 3(3), 260–268.CrossRefGoogle Scholar
  17. 17.
    Yoon, J. H., Thompson, L. U., & Jenkins, D. J. A. (1983). American Journal of Clinical Nutrition, 38, 835–842.Google Scholar
  18. 18.
    Sindhu, S. C., & Khetarpaul, N. (2001). Journal of Food Composition and Analysis, 14, 601–609.CrossRefGoogle Scholar
  19. 19.
    Sindhu, S. C., & Khetarpaul, N. (2003). Plant Foods for Human Nutrition, 58, 1–10.CrossRefGoogle Scholar
  20. 20.
    Lei, X. G., & Porres, J. M. (2003). Biotechnology Letters, 25, 1787–1794.CrossRefGoogle Scholar
  21. 21.
    Cao, L., Wang, W., Yang, C., Yang, Y., Diana, J., Yakupitiyage, A., Luo, Z., & Li, D. (2007). Enzyme and Microbial Technology, 40, 497–507.CrossRefGoogle Scholar
  22. 22.
    Patzek, T. W. (2006). Natural Resources Research, 15(3), 205–212.CrossRefGoogle Scholar
  23. 23.
    Native starch. (1997) Determination of starch content. Ewers polarimetric method - ISO 10520:1997Google Scholar
  24. 24.
    Park, H.-R., Ahn, H.-J., Kim, S.-H., Lee, C.-H., Byun, M.-W., & Lee, G.-W. (2006). Food Control, 17, 727–732.CrossRefGoogle Scholar
  25. 25.
    Cavell, A. J. (1955). Journal of the Science of Food and Agriculture, 6(8), 479–480.CrossRefGoogle Scholar
  26. 26.
    Kłosowski, G., Mikulski, D., Czupryński, B., & Kotarska, K. (2010). Journal of Bioscience and Bioengineering, 109(5), 466–471.CrossRefGoogle Scholar
  27. 27.
    Pradeep, P., & Reddy, O. V. S. (2010). Indian Journal of Microbiology, 50(1), 82–87.CrossRefGoogle Scholar
  28. 28.
    Microbiology of food and animal feeding stuffs. (2008). Horizontal method for the enumeration of yeasts and moulds—Part 1: Colony count technique in products with water activity greater than 0.95 - ISO 21527-1:2008.Google Scholar
  29. 29.
    Alfenore, S., Molina-Jouve, C., Guillouet, S. E., Uribelarrea, J.-L., Goma, G., & Benbadis, L. (2002). Applied Microbiology and Biotechnology, 60, 67–72.CrossRefGoogle Scholar
  30. 30.
    Yeast. Test methods. (1997). Determination of content of phosphorus - PN-A-79005-8:1997.Google Scholar
  31. 31.
    Kłosowski, G., & Mikulski, D. (2010). Bioresource Technology, 101, 9723–9727.CrossRefGoogle Scholar
  32. 32.
    Fujita, J., Fukuda, H., Yamane, Y.-i., Kizaki, Y., Shigeta, S., Ono, K., Suzuk, O., & Wakabayashi, S. (2001). Journal of Biotechnology Letters, 23, 867–871.CrossRefGoogle Scholar
  33. 33.
    Jackowetz, J. N., Dierschke, S., & Mira de Orduña, R. (2011). Food Research International, 44, 310–316.CrossRefGoogle Scholar
  34. 34.
    Roustan, J. L., & Sablayrolles, J.-M. (2002). Journal of Bioscience and Bioengineering, 93(4), 367–375.CrossRefGoogle Scholar
  35. 35.
    Furukawa, K., Yamada, T., Mizoguchi, H., & Hara, S. (2003). Journal of Bioscience and Bioengineering, 96(4), 380–386.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of BiotechnologyKazimierz Wielki UniversityBydgoszczPoland

Personalised recommendations