Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1354–1364 | Cite as

Concurrent Biosurfactant and Ligninolytic Enzyme Production by Pleurotus spp. in Solid-State Fermentation

  • Zulfiye Velioglu
  • Raziye Ozturk UrekEmail author


Pleurotus spp. is known as one of the significant producers of ligninolytic enzymes which efficiently degrade lignocellulosic materials. Recent studies on potential of biosurfactant production by Pleurotus spp. have increased. Biosurfactants have several positive features compared to synthetic ones. We investigated simultaneous and economic biosurfactant and ligninolytic enzymes (laccase, manganese peroxidase, and lignin peroxidase) production by Pleurotus djamore, Pleurotus eryngii, and Pleurotus sajor-caju in solid-state fermentation in three different growth media. Sunflower seed shell was used as solid substrate; hence, it was not only an alternative way to reduce environmental pollution but also a potential for production of valuable biotechnological products. During the study, oil spreading efficiency, emulsification index (E), surface tension (ST), and enzyme activities were assessed. Correlations between biosurfactant and enzyme activities were investigated. To results, the most active biosurfactant was produced by P. djamore in medium II (ST = 29.79 ± 0.5 mN m−1; E 24 = 35.29 ± 2.6 %; diameter of clear zone = 3.5 ± 0.3 cm), and the highest LiP activity was determined as 5,832.26 ± 102 UL−1. When FTIR was used to confirm the various functional groups, the results may indicate the protein-polysaccharide-lipid complex structure of produced biosurfactant. Degradation of several environmental pollutant compounds is a common usage area of biosurfactant and ligninolytic enzymes.


Biosurfactant Ligninolytic enzymes Pleurotus sp. Sunflower seed shell Solid-state fermentation 



We thank Dr. Ufuk Malayoglu for surface tension analysis and Doğa Gıda-Izmir, Turkey, for providing solid substrate. This work was supported by the Scientific and Technological Research Council of Turkey under grant 113M801


  1. 1.
    Bhardwaj, G., Cameotra, S. S., & Chopra, H. K. (2013). Petrol. Environmental Biotechnology. doi: 10.4172/2157-7463.1000160.Google Scholar
  2. 2.
    Muthusamy, K., Gopalakrishnan, S., Ravi, T. K., & Sivachidambaram, P. (2008). Current Science, 94(6), 7–36.Google Scholar
  3. 3.
    Saharan, B. S., Sahu, R. K., & Sharma, D. (2011). Genetic Engineering and Biotechnology Journal, 29(7), 1–39.Google Scholar
  4. 4.
    Nitschke, M., & Costa, S. G. V. A. (2007). Trend in Food Science and Technology, 18, 252–259.CrossRefGoogle Scholar
  5. 5.
    Nikiforova, S. V., Pozdnyakova, N. N., & Turkovskaya, O. V. (2009). Current Microbiology, 58, 554–558.CrossRefGoogle Scholar
  6. 6.
    Radhika, R., Jebapriya, G. R., & Gnanadoss, J. J. (2013). International Journal of Current Science, 6, E7–13.Google Scholar
  7. 7.
    Maciel, M. J. M., Silva, A. C., & Ribeiro, H. C. T. (2010). Electronic Journal of Biotechnology. doi: 10.2225/vol13-issue6-fulltext-2.Google Scholar
  8. 8.
    Massadeh, M. I., Fraij, A., & Fandi, K. (2010). Jordan Journal of Biological Sciences, 3(2), 51–54.Google Scholar
  9. 9.
    Stajić, M., Persky, L., Friesem, D., Hadar, Y., Wasser, S. P., Nevo, E., & Vukojevic, J. (2006). Enzyme and Microbial Technology, 38, 65–73.CrossRefGoogle Scholar
  10. 10.
    Kiran, G. S., Thomas, T. A., & Selvin, J. (2010). Colloid and Surfaces B: Biointerfaces, 78, 8–16.CrossRefGoogle Scholar
  11. 11.
    Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Current Science, 77(1), 149–162.Google Scholar
  12. 12.
    Akpinar, M., & Ozturk Urek, R. (2014). Preparative Biochemistry & Biotechnology. doi: 10.1080/10826068.2013.867870.Google Scholar
  13. 13.
    Bazalel, L., Hadar, Y., & Cerniglia, C. (1997). Applied and Environmental Microbiology, 63, 2495–2501.Google Scholar
  14. 14.
    Campbel, M. M., & Ellis, B. E. (1992). Planta, 186(3), 409–417.CrossRefGoogle Scholar
  15. 15.
    Šušterčić, N. (1979) Material testing. Chemistry and Technology Education Center ZagrebGoogle Scholar
  16. 16.
    Pinto, M. H., Martins, R. G., & Costa, J. A. V. (2009). Quimica Nova, 32(8), 2104–2108.CrossRefGoogle Scholar
  17. 17.
    Youssef, N. H., Duncana, K. E., Naglea, D. P., Savagea, K. N., Knappb, R. M., & McInerney, M. J. (2004). Journal of Microbiology Methods, 56, 339–347.CrossRefGoogle Scholar
  18. 18.
    Niku-Paavola, M. L., Raaska, M., & Itavara, M. (1990). Mycological Research, 94, 27–31.CrossRefGoogle Scholar
  19. 19.
    Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., Zhang, N., & He, B. (2009). Process Biochemistry, 44, 302–308.CrossRefGoogle Scholar
  20. 20.
    Chander, C. R., Lohitnath, T., Mukesh Kumar, D. J., & Kalaichelvan, P. T. (2012). Advances in Applied Science Research, 3(3), 1827–1831.Google Scholar
  21. 21.
    Satpute, S. K., Banpurkar, A. G., Dhakephalkar, P. K., Banat, I. M., & Chopade, B. A. (2010). Critic. Reviews in Biotechnology, 1–18.Google Scholar
  22. 22.
    Heyd, M., Kohnert, A., Tan, T. H., Nusser, M., Kirschhöfer, F., Brenner-Weiss, G., Franzreb, M., & Berensmeier, S. (2008). Analytical and Bioanalytical Chemistry, 391, 1579–1590.CrossRefGoogle Scholar
  23. 23.
    Moldes, A. B., Paradelo, R., Vecino, X., Cruz, J. M., Gudiña, E., Rodrigues, L., Teixeira, J. A., Domínguez, J. M., & Barral, M. T. (2013). BioMed Research International. doi: 10.1155/2013/961842.Google Scholar
  24. 24.
    Jain, R. M., Modya, K., Joshi, N., Mishraa, A., & Jhaa, B. (2013). Colloids and Surfaces B: Biointerfaces, 108, 199–204.CrossRefGoogle Scholar
  25. 25.
    Aparnaa, A., Srinikethana, G., & Smitha, H. (2012). Colloids and Surfaces B: Biointerfaces, 95, 23–29.CrossRefGoogle Scholar
  26. 26.
    Pacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). International Journal of Molecular Sciences, 12, 633–654.CrossRefGoogle Scholar
  27. 27.
    Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61(1), 47–64.Google Scholar
  28. 28.
    Pelàez, F., Martinez, M. J., & Angel, T. M. (1995). Mycological Research, 99, 37–42.CrossRefGoogle Scholar
  29. 29.
    Dritsa, V., & Rigas, F. J. (2013). Journal of Mining World Express, 2(1), 23–30.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Biotechnology Department, Graduate School of Natural and Applied SciencesDokuz Eylül UniversityBucaTurkey
  2. 2.Chemistry Department, Biochemistry Division, Faculty of ScienceDokuz Eylül UniversityBucaTurkey

Personalised recommendations