Skip to main content
Log in

Concurrent Biosurfactant and Ligninolytic Enzyme Production by Pleurotus spp. in Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pleurotus spp. is known as one of the significant producers of ligninolytic enzymes which efficiently degrade lignocellulosic materials. Recent studies on potential of biosurfactant production by Pleurotus spp. have increased. Biosurfactants have several positive features compared to synthetic ones. We investigated simultaneous and economic biosurfactant and ligninolytic enzymes (laccase, manganese peroxidase, and lignin peroxidase) production by Pleurotus djamore, Pleurotus eryngii, and Pleurotus sajor-caju in solid-state fermentation in three different growth media. Sunflower seed shell was used as solid substrate; hence, it was not only an alternative way to reduce environmental pollution but also a potential for production of valuable biotechnological products. During the study, oil spreading efficiency, emulsification index (E), surface tension (ST), and enzyme activities were assessed. Correlations between biosurfactant and enzyme activities were investigated. To results, the most active biosurfactant was produced by P. djamore in medium II (ST = 29.79 ± 0.5 mN m−1; E 24 = 35.29 ± 2.6 %; diameter of clear zone = 3.5 ± 0.3 cm), and the highest LiP activity was determined as 5,832.26 ± 102 UL−1. When FTIR was used to confirm the various functional groups, the results may indicate the protein-polysaccharide-lipid complex structure of produced biosurfactant. Degradation of several environmental pollutant compounds is a common usage area of biosurfactant and ligninolytic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhardwaj, G., Cameotra, S. S., & Chopra, H. K. (2013). Petrol. Environmental Biotechnology. doi:10.4172/2157-7463.1000160.

    Google Scholar 

  2. Muthusamy, K., Gopalakrishnan, S., Ravi, T. K., & Sivachidambaram, P. (2008). Current Science, 94(6), 7–36.

    Google Scholar 

  3. Saharan, B. S., Sahu, R. K., & Sharma, D. (2011). Genetic Engineering and Biotechnology Journal, 29(7), 1–39.

    Google Scholar 

  4. Nitschke, M., & Costa, S. G. V. A. (2007). Trend in Food Science and Technology, 18, 252–259.

    Article  CAS  Google Scholar 

  5. Nikiforova, S. V., Pozdnyakova, N. N., & Turkovskaya, O. V. (2009). Current Microbiology, 58, 554–558.

    Article  CAS  Google Scholar 

  6. Radhika, R., Jebapriya, G. R., & Gnanadoss, J. J. (2013). International Journal of Current Science, 6, E7–13.

    Google Scholar 

  7. Maciel, M. J. M., Silva, A. C., & Ribeiro, H. C. T. (2010). Electronic Journal of Biotechnology. doi:10.2225/vol13-issue6-fulltext-2.

    Google Scholar 

  8. Massadeh, M. I., Fraij, A., & Fandi, K. (2010). Jordan Journal of Biological Sciences, 3(2), 51–54.

    CAS  Google Scholar 

  9. Stajić, M., Persky, L., Friesem, D., Hadar, Y., Wasser, S. P., Nevo, E., & Vukojevic, J. (2006). Enzyme and Microbial Technology, 38, 65–73.

    Article  Google Scholar 

  10. Kiran, G. S., Thomas, T. A., & Selvin, J. (2010). Colloid and Surfaces B: Biointerfaces, 78, 8–16.

    Article  CAS  Google Scholar 

  11. Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Current Science, 77(1), 149–162.

    CAS  Google Scholar 

  12. Akpinar, M., & Ozturk Urek, R. (2014). Preparative Biochemistry & Biotechnology. doi:10.1080/10826068.2013.867870.

    Google Scholar 

  13. Bazalel, L., Hadar, Y., & Cerniglia, C. (1997). Applied and Environmental Microbiology, 63, 2495–2501.

    Google Scholar 

  14. Campbel, M. M., & Ellis, B. E. (1992). Planta, 186(3), 409–417.

    Article  Google Scholar 

  15. Šušterčić, N. (1979) Material testing. Chemistry and Technology Education Center Zagreb

  16. Pinto, M. H., Martins, R. G., & Costa, J. A. V. (2009). Quimica Nova, 32(8), 2104–2108.

    Article  Google Scholar 

  17. Youssef, N. H., Duncana, K. E., Naglea, D. P., Savagea, K. N., Knappb, R. M., & McInerney, M. J. (2004). Journal of Microbiology Methods, 56, 339–347.

    Article  CAS  Google Scholar 

  18. Niku-Paavola, M. L., Raaska, M., & Itavara, M. (1990). Mycological Research, 94, 27–31.

    Article  Google Scholar 

  19. Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., Zhang, N., & He, B. (2009). Process Biochemistry, 44, 302–308.

    Article  CAS  Google Scholar 

  20. Chander, C. R., Lohitnath, T., Mukesh Kumar, D. J., & Kalaichelvan, P. T. (2012). Advances in Applied Science Research, 3(3), 1827–1831.

    Google Scholar 

  21. Satpute, S. K., Banpurkar, A. G., Dhakephalkar, P. K., Banat, I. M., & Chopade, B. A. (2010). Critic. Reviews in Biotechnology, 1–18.

  22. Heyd, M., Kohnert, A., Tan, T. H., Nusser, M., Kirschhöfer, F., Brenner-Weiss, G., Franzreb, M., & Berensmeier, S. (2008). Analytical and Bioanalytical Chemistry, 391, 1579–1590.

    Article  CAS  Google Scholar 

  23. Moldes, A. B., Paradelo, R., Vecino, X., Cruz, J. M., Gudiña, E., Rodrigues, L., Teixeira, J. A., Domínguez, J. M., & Barral, M. T. (2013). BioMed Research International. doi:10.1155/2013/961842.

    Google Scholar 

  24. Jain, R. M., Modya, K., Joshi, N., Mishraa, A., & Jhaa, B. (2013). Colloids and Surfaces B: Biointerfaces, 108, 199–204.

    Article  CAS  Google Scholar 

  25. Aparnaa, A., Srinikethana, G., & Smitha, H. (2012). Colloids and Surfaces B: Biointerfaces, 95, 23–29.

    Article  Google Scholar 

  26. Pacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., & Cameotra, S. S. (2011). International Journal of Molecular Sciences, 12, 633–654.

    Article  Google Scholar 

  27. Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    CAS  Google Scholar 

  28. Pelàez, F., Martinez, M. J., & Angel, T. M. (1995). Mycological Research, 99, 37–42.

    Article  Google Scholar 

  29. Dritsa, V., & Rigas, F. J. (2013). Journal of Mining World Express, 2(1), 23–30.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Ufuk Malayoglu for surface tension analysis and Doğa Gıda-Izmir, Turkey, for providing solid substrate. This work was supported by the Scientific and Technological Research Council of Turkey under grant 113M801

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raziye Ozturk Urek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velioglu, Z., Ozturk Urek, R. Concurrent Biosurfactant and Ligninolytic Enzyme Production by Pleurotus spp. in Solid-State Fermentation. Appl Biochem Biotechnol 174, 1354–1364 (2014). https://doi.org/10.1007/s12010-014-1136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1136-3

Keywords

Navigation