Skip to main content

Advertisement

Log in

Dynamic Fabrication of Tissue-Engineered Bone Substitutes Based on Derived Cancellous Bone Scaffold in a Spinner Flask Bioreactor System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The in vitro dynamic fabrications of tissue-engineered bones were performed to assess the advantages of human adipose-derived stem cells (hADSCs) combined with acellular cancellous bone scaffold coming from fresh pig femur in a spinner flask compared with traditional static culture. In this study, the bio-derived cancellous bone was regarded as a biomimetic scaffold, and its surface appearance was observed under scanning electron microscopy (SEM). Moreover, its modulus of elasticity and chemical composition were measured with universal testing machine (UTM) and infrared detector, respectively. hADSCs were inoculated into cancellous bone scaffold at a density of 1 × 106 cells/mL and cultured in spinner flask and T-flask with osteogenic medium (OM) for 2 weeks, respectively. Following to this, the osteogenic differentiation was qualitatively and quantitatively detected with alkaline phosphatase (ALP) kits, and the cell growth and viability were assayed using Live/Dead staining; cell adhesion and extracellular matrix secretion were observed under a SEM. The average pore size of cancellous bone scaffold was 284.5 ± 83.62 μm, the elasticity modulus was 41.27 ± 15.63 MPa, and it also showed excellent biocompatibility. The hADSCs with multidifferentiation potentials were well proliferated, could grow to 90 % fusion within 5 days, and were therefore suitable to use as seed cells in the construction of tissue-engineered bones. After 2 weeks of fabrication, cells were well-distributed on scaffolds, and these scaffolds still remained intact. Compared to static environment, the ALP expression, cell distribution, and extracellular matrix secretion on cancellous bones in spinner flask were much better. It confirmed that three-dimensional dynamic culture in spinner flask promoted ADSC osteogenic differentiation, proliferation, and matrix secretion significantly to make for the fabrication of engineered bone substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu, Y., Ming, L., Luo, H., Liu, W., Zhang, Y., Liu, H., et al. (2013). Biomaterials, 34(38), 9998–10006.

    Article  CAS  Google Scholar 

  2. Cuthbert, R. J., Churchman, S. M., Tan, H. B., McGonagle, D., Jones, E., & Giannoudis, P. V. (2013). Bone, 57(2), 484–492.

    Article  CAS  Google Scholar 

  3. Song, K., Yang, Z., Liu, T., Zhi, W., Li, X., Deng, L., et al. (2006). Biotechnology and Applied Biochemistry, 45(Pt 2), 65–74.

    CAS  Google Scholar 

  4. Jun, Y., Kang, A. R., Lee, J. S., Park, S. J., Lee, D. Y., Moon, S. H., et al. (2014). Biomaterials, 35(17), 4815–4826.

    Article  CAS  Google Scholar 

  5. Lu, W., Ji, K., Kirkham, J., Yan, Y., Boccaccini, A. R., Kellett, M., et al. (2014). Cell and Tissue Research, 356(1), 97–107.

    Article  CAS  Google Scholar 

  6. Desai, V. D., Hsia, H. C., & Schwarzbauer, J. E. (2014). PLoS One, 9(1), e86865.

    Article  Google Scholar 

  7. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2001). Tissue Engineering, 7(2), 211–228.

    Article  CAS  Google Scholar 

  8. Huang, S. J., Fu, R. H., Shyu, W. C., Liu, S. P., Jong, G. P., Chiu, Y. W., et al. (2013). Cell Transplantation, 22(4), 701–709.

    Article  Google Scholar 

  9. Leong, D. T., Abraham, M. C., Gupta, A., Lim, T. C., Chew, F. T., & Hutmacher, D. W. (2012). Journal of Cellular Biochemistry, 113(8), 2744–2753.

    Article  CAS  Google Scholar 

  10. Seong, J. M., Kim, B. C., Park, J. H., Kwon, I. K., Mantalaris, A., & Hwang, Y. S. (2010). Biomedical Materials, 5(6), 062001.

    Article  Google Scholar 

  11. Beris, A. E., Lykissas, M. G., Papageorgiou, C. D., & Georgoulis, A. D. (2005). Injury, 36(4), 14–23.

    Article  Google Scholar 

  12. Gao, J., Dennis, J. E., Solchaga, L. A., Goldberg, V. M., & Caplan, A. I. (2002). Tissue Engineering, 8(5), 827–837.

    Article  CAS  Google Scholar 

  13. Choi, Y. S., Matsud, A. K., Dusting, G. J., Morrison, W. A., & Dilley, R. J. (2010). Biomaterials, 31(8), 2236–2242.

    Article  CAS  Google Scholar 

  14. Bi, L., Li, D., Liu, M., Jin, J., Lv, R., Huang, Z. S., et al. (2010). Materials Letters, 64(19), 2056–2059.

    Article  CAS  Google Scholar 

  15. Liu, H., & Roy, K. (2005). Tissue Engineering, 11(1–2), 319–330.

    Article  CAS  Google Scholar 

  16. Stich, S., Ibold, Y., Abbas, A., Ullah, M., Sittinger, M., Ringe, J., et al. (2014). Biotechnology Progress, 30(1), 142–151.

    Article  CAS  Google Scholar 

  17. Rourou, S., Riahi, N., Majoul, S., Trabelsi, K., & Kallel, H. (2013). Applied Biochemistry and Biotechnology, 170(7), 1724–1737.

    Article  CAS  Google Scholar 

  18. Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L., et al. (2004). Annals of Biomedical Engineering, 32(1), 112–122.

    Article  Google Scholar 

  19. Stiehler, M., Bunger, C., Baatrup, A., Lind, M., Kassem, M., & Mygind, T. (2009). Journal of Biomedical Materials Research. Part A, 89(1), 96–107.

    Google Scholar 

  20. Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., & Cui, Z. (2008). Cell Biochemistry and Function, 26(6), 664–675.

    Article  CAS  Google Scholar 

  21. Song, K., Liu, T., Cui, Z., Li, X., & Ma, X. (2008). Journal of Biomedical Materials Research. Part A, 86(2), 323–332.

    Article  Google Scholar 

  22. Song, K., Liu, Y., Macedo, H. M., Jiang, L., Li, C., Mei, G., et al. (2013). Materials Science and Engineering C: Materials for Biological Applications, 33(3), 1506–1513.

    Article  CAS  Google Scholar 

  23. Song, K., Wang, Z., Li, W., Zhang, C., Lim, M., & Liu, T. (2013). Applied Biochemistry and Biotechnology, 170(2), 459–470.

    Article  CAS  Google Scholar 

  24. Jiang, L., Liu, T., & Song, K. (2012). Applied Biochemistry and Biotechnology, 168(8), 2230–2244.

    Article  CAS  Google Scholar 

  25. Song, K., Li, W., Wang, H., Wang, H., Liu, T., Ning, R., et al. (2012). Applied Biochemistry and Biotechnology, 167(8), 2381–2387.

    Article  CAS  Google Scholar 

  26. Song, K., Wang, H., Wang, H., Wang, L., Qiao, M., Wu, S., et al. (2011). Applied Biochemistry and Biotechnology, 165(3–4), 776–784.

    Article  CAS  Google Scholar 

  27. Song, K., Qiao, M., Liu, T., Jiang, B., Macedo, H. M., Ma, X., et al. (2010). Journal of Materials Science Materials in Medicine, 21(10), 2835–2842.

    Article  CAS  Google Scholar 

  28. Tassani, S., Oehman, C., Baleani, M., Baruffaldi, F., & Viceconti, M. (2009). Journal of Biomechanics, 43(6), 1160–1166.

    Article  Google Scholar 

  29. Perilli, E., Baleani, M., Ohman, C., Fognani, R., Baruffaldi, F., & Viceconti, M. (2007). Journal of Biomechanics, 41(2), 438–446.

    Article  Google Scholar 

  30. Perilli, E., Baleani, M., Ohman, C., Baruffaldi, F., & Viceconti, M. (2007). Bone, 41(5), 760–768.

    Article  CAS  Google Scholar 

  31. Huang, J. I., Beanes, S. R., Zhu, M., Lorenz, H. P., Hedrick, M. H., & Benhaim, P. (2002). Plastic and Reconstructive Surgery, 109(3), 1033–1041.

    Article  Google Scholar 

  32. Murphy, C. M., Haugh, M. G., & O'Brien, F. J. (2010). Biomaterials, 31(3), 461–466.

    Article  CAS  Google Scholar 

  33. Handel, M., Hammer, T. R., Nooeaid, P., Boccaccini, A. R., & Hoefer, D. (2013). Tissue Engineering. Part A, 19(23–24), 2703–2712.

    Article  CAS  Google Scholar 

  34. Liu, G., Zhang, Y., Liu, B., Sun, J., Li, W., & Cui, L. (2013). Biomaterials, 34(11), 2655–2664.

    Article  CAS  Google Scholar 

  35. Tandon, N., Marolt, D., Cimetta, E., & Vunjak-Novakovic, G. (2013). Biotechnology Advances, 31(7), 1020–1031.

    Article  CAS  Google Scholar 

  36. Sart, S., Errachid, A., Schneider, Y. J., & Agathos, S. N. (2013). Journal of Tissue Engineering and Regenerative Medicine, 7(7), 537–551.

    Article  CAS  Google Scholar 

  37. Saha, A. K., & Mazumdar, J. N. (2003). IEEE Transactions on Nanobioscience, 2(2), 89–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fok Ying Tung Education Foundation (132027), National Science Foundation of China (31370991/31170945/81271719), SRF for ROCS, SEM, and the State Key Laboratory of Fine Chemicals (KF1111) and the Fundamental Research Funds for the Central Universities (DUT04YQ106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Kedong or Liu Tianqing.

Additional information

Song K, Li W, Zhu Y, and Wang H are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kedong, S., Wenfang, L., Yanxia, Z. et al. Dynamic Fabrication of Tissue-Engineered Bone Substitutes Based on Derived Cancellous Bone Scaffold in a Spinner Flask Bioreactor System. Appl Biochem Biotechnol 174, 1331–1343 (2014). https://doi.org/10.1007/s12010-014-1132-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1132-7

Keywords

Navigation