Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1331–1343 | Cite as

Dynamic Fabrication of Tissue-Engineered Bone Substitutes Based on Derived Cancellous Bone Scaffold in a Spinner Flask Bioreactor System

  • Song KedongEmail author
  • Li Wenfang
  • Zhu Yanxia
  • Wang Hong
  • Yu Ze
  • Lim Mayasari
  • Liu TianqingEmail author
Article

Abstract

The in vitro dynamic fabrications of tissue-engineered bones were performed to assess the advantages of human adipose-derived stem cells (hADSCs) combined with acellular cancellous bone scaffold coming from fresh pig femur in a spinner flask compared with traditional static culture. In this study, the bio-derived cancellous bone was regarded as a biomimetic scaffold, and its surface appearance was observed under scanning electron microscopy (SEM). Moreover, its modulus of elasticity and chemical composition were measured with universal testing machine (UTM) and infrared detector, respectively. hADSCs were inoculated into cancellous bone scaffold at a density of 1 × 106 cells/mL and cultured in spinner flask and T-flask with osteogenic medium (OM) for 2 weeks, respectively. Following to this, the osteogenic differentiation was qualitatively and quantitatively detected with alkaline phosphatase (ALP) kits, and the cell growth and viability were assayed using Live/Dead staining; cell adhesion and extracellular matrix secretion were observed under a SEM. The average pore size of cancellous bone scaffold was 284.5 ± 83.62 μm, the elasticity modulus was 41.27 ± 15.63 MPa, and it also showed excellent biocompatibility. The hADSCs with multidifferentiation potentials were well proliferated, could grow to 90 % fusion within 5 days, and were therefore suitable to use as seed cells in the construction of tissue-engineered bones. After 2 weeks of fabrication, cells were well-distributed on scaffolds, and these scaffolds still remained intact. Compared to static environment, the ALP expression, cell distribution, and extracellular matrix secretion on cancellous bones in spinner flask were much better. It confirmed that three-dimensional dynamic culture in spinner flask promoted ADSC osteogenic differentiation, proliferation, and matrix secretion significantly to make for the fabrication of engineered bone substitutes.

Keywords

Tissue-engineered bone hADSCs Acellular cancellous bone Cell culture Spinner flask 

Notes

Acknowledgments

This work was supported by the Fok Ying Tung Education Foundation (132027), National Science Foundation of China (31370991/31170945/81271719), SRF for ROCS, SEM, and the State Key Laboratory of Fine Chemicals (KF1111) and the Fundamental Research Funds for the Central Universities (DUT04YQ106).

References

  1. 1.
    Liu, Y., Ming, L., Luo, H., Liu, W., Zhang, Y., Liu, H., et al. (2013). Biomaterials, 34(38), 9998–10006.CrossRefGoogle Scholar
  2. 2.
    Cuthbert, R. J., Churchman, S. M., Tan, H. B., McGonagle, D., Jones, E., & Giannoudis, P. V. (2013). Bone, 57(2), 484–492.CrossRefGoogle Scholar
  3. 3.
    Song, K., Yang, Z., Liu, T., Zhi, W., Li, X., Deng, L., et al. (2006). Biotechnology and Applied Biochemistry, 45(Pt 2), 65–74.Google Scholar
  4. 4.
    Jun, Y., Kang, A. R., Lee, J. S., Park, S. J., Lee, D. Y., Moon, S. H., et al. (2014). Biomaterials, 35(17), 4815–4826.CrossRefGoogle Scholar
  5. 5.
    Lu, W., Ji, K., Kirkham, J., Yan, Y., Boccaccini, A. R., Kellett, M., et al. (2014). Cell and Tissue Research, 356(1), 97–107.CrossRefGoogle Scholar
  6. 6.
    Desai, V. D., Hsia, H. C., & Schwarzbauer, J. E. (2014). PLoS One, 9(1), e86865.CrossRefGoogle Scholar
  7. 7.
    Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2001). Tissue Engineering, 7(2), 211–228.CrossRefGoogle Scholar
  8. 8.
    Huang, S. J., Fu, R. H., Shyu, W. C., Liu, S. P., Jong, G. P., Chiu, Y. W., et al. (2013). Cell Transplantation, 22(4), 701–709.CrossRefGoogle Scholar
  9. 9.
    Leong, D. T., Abraham, M. C., Gupta, A., Lim, T. C., Chew, F. T., & Hutmacher, D. W. (2012). Journal of Cellular Biochemistry, 113(8), 2744–2753.CrossRefGoogle Scholar
  10. 10.
    Seong, J. M., Kim, B. C., Park, J. H., Kwon, I. K., Mantalaris, A., & Hwang, Y. S. (2010). Biomedical Materials, 5(6), 062001.CrossRefGoogle Scholar
  11. 11.
    Beris, A. E., Lykissas, M. G., Papageorgiou, C. D., & Georgoulis, A. D. (2005). Injury, 36(4), 14–23.CrossRefGoogle Scholar
  12. 12.
    Gao, J., Dennis, J. E., Solchaga, L. A., Goldberg, V. M., & Caplan, A. I. (2002). Tissue Engineering, 8(5), 827–837.CrossRefGoogle Scholar
  13. 13.
    Choi, Y. S., Matsud, A. K., Dusting, G. J., Morrison, W. A., & Dilley, R. J. (2010). Biomaterials, 31(8), 2236–2242.CrossRefGoogle Scholar
  14. 14.
    Bi, L., Li, D., Liu, M., Jin, J., Lv, R., Huang, Z. S., et al. (2010). Materials Letters, 64(19), 2056–2059.CrossRefGoogle Scholar
  15. 15.
    Liu, H., & Roy, K. (2005). Tissue Engineering, 11(1–2), 319–330.CrossRefGoogle Scholar
  16. 16.
    Stich, S., Ibold, Y., Abbas, A., Ullah, M., Sittinger, M., Ringe, J., et al. (2014). Biotechnology Progress, 30(1), 142–151.CrossRefGoogle Scholar
  17. 17.
    Rourou, S., Riahi, N., Majoul, S., Trabelsi, K., & Kallel, H. (2013). Applied Biochemistry and Biotechnology, 170(7), 1724–1737.CrossRefGoogle Scholar
  18. 18.
    Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L., et al. (2004). Annals of Biomedical Engineering, 32(1), 112–122.CrossRefGoogle Scholar
  19. 19.
    Stiehler, M., Bunger, C., Baatrup, A., Lind, M., Kassem, M., & Mygind, T. (2009). Journal of Biomedical Materials Research. Part A, 89(1), 96–107.Google Scholar
  20. 20.
    Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., & Cui, Z. (2008). Cell Biochemistry and Function, 26(6), 664–675.CrossRefGoogle Scholar
  21. 21.
    Song, K., Liu, T., Cui, Z., Li, X., & Ma, X. (2008). Journal of Biomedical Materials Research. Part A, 86(2), 323–332.CrossRefGoogle Scholar
  22. 22.
    Song, K., Liu, Y., Macedo, H. M., Jiang, L., Li, C., Mei, G., et al. (2013). Materials Science and Engineering C: Materials for Biological Applications, 33(3), 1506–1513.CrossRefGoogle Scholar
  23. 23.
    Song, K., Wang, Z., Li, W., Zhang, C., Lim, M., & Liu, T. (2013). Applied Biochemistry and Biotechnology, 170(2), 459–470.CrossRefGoogle Scholar
  24. 24.
    Jiang, L., Liu, T., & Song, K. (2012). Applied Biochemistry and Biotechnology, 168(8), 2230–2244.CrossRefGoogle Scholar
  25. 25.
    Song, K., Li, W., Wang, H., Wang, H., Liu, T., Ning, R., et al. (2012). Applied Biochemistry and Biotechnology, 167(8), 2381–2387.CrossRefGoogle Scholar
  26. 26.
    Song, K., Wang, H., Wang, H., Wang, L., Qiao, M., Wu, S., et al. (2011). Applied Biochemistry and Biotechnology, 165(3–4), 776–784.CrossRefGoogle Scholar
  27. 27.
    Song, K., Qiao, M., Liu, T., Jiang, B., Macedo, H. M., Ma, X., et al. (2010). Journal of Materials Science Materials in Medicine, 21(10), 2835–2842.CrossRefGoogle Scholar
  28. 28.
    Tassani, S., Oehman, C., Baleani, M., Baruffaldi, F., & Viceconti, M. (2009). Journal of Biomechanics, 43(6), 1160–1166.CrossRefGoogle Scholar
  29. 29.
    Perilli, E., Baleani, M., Ohman, C., Fognani, R., Baruffaldi, F., & Viceconti, M. (2007). Journal of Biomechanics, 41(2), 438–446.CrossRefGoogle Scholar
  30. 30.
    Perilli, E., Baleani, M., Ohman, C., Baruffaldi, F., & Viceconti, M. (2007). Bone, 41(5), 760–768.CrossRefGoogle Scholar
  31. 31.
    Huang, J. I., Beanes, S. R., Zhu, M., Lorenz, H. P., Hedrick, M. H., & Benhaim, P. (2002). Plastic and Reconstructive Surgery, 109(3), 1033–1041.CrossRefGoogle Scholar
  32. 32.
    Murphy, C. M., Haugh, M. G., & O'Brien, F. J. (2010). Biomaterials, 31(3), 461–466.CrossRefGoogle Scholar
  33. 33.
    Handel, M., Hammer, T. R., Nooeaid, P., Boccaccini, A. R., & Hoefer, D. (2013). Tissue Engineering. Part A, 19(23–24), 2703–2712.CrossRefGoogle Scholar
  34. 34.
    Liu, G., Zhang, Y., Liu, B., Sun, J., Li, W., & Cui, L. (2013). Biomaterials, 34(11), 2655–2664.CrossRefGoogle Scholar
  35. 35.
    Tandon, N., Marolt, D., Cimetta, E., & Vunjak-Novakovic, G. (2013). Biotechnology Advances, 31(7), 1020–1031.CrossRefGoogle Scholar
  36. 36.
    Sart, S., Errachid, A., Schneider, Y. J., & Agathos, S. N. (2013). Journal of Tissue Engineering and Regenerative Medicine, 7(7), 537–551.CrossRefGoogle Scholar
  37. 37.
    Saha, A. K., & Mazumdar, J. N. (2003). IEEE Transactions on Nanobioscience, 2(2), 89–93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue EngineeringDalian University of TechnologyDalianChina
  2. 2.Anti-Ageing and Regenerative Medicine CentreShenzhen UniversityShenzhenChina
  3. 3.Department of OrthopaedicsThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
  4. 4.Division of Bioengineering, School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations