Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1471–1483 | Cite as

Lipid Production of Microalga Ankistrodesmus falcatus Increased by Nutrient and Light Starvation in a Two-Stage Cultivation Process

  • Pablo David Álvarez-DíazEmail author
  • Jesús Ruiz
  • Zouhayr Arbib
  • Jesús Barragán
  • Carmen Garrido-Pérez
  • José Antonio Perales
Article

Abstract

The aim of this work was to study the stimulation of lipid production on the microalga Ankistrodesmus falcatus by varying cultivation conditions during the stationary phase. The effect of three factors (presence and absence of nitrogen, phosphorus, and light) has been tested once the cultures reached the stationary phase with the aim to increase the value of the biomass for further applications. Lipid content, elemental composition, Nile red fluorescence evolution, and calorific value of microalgal biomass were studied as well as biomass growth. Biomass presented a lipid content of 36.54 % at the end of the first stage, while at the end of the second stage, the experiments with the absence of phosphorus increased their lipid content until 45.94 and 44.55 %, the first with nitrogen and light presence and the second with absence of all factors. The combination of phosphorus absence and nitrogen and light presence achieved the highest lipid productivity (20.27 mg/L/day). The two-stage strategy to culture microalgae is a feasible option to increase the economic or energetic value of biomass.

Keywords

Microalgae Ankistrodesmus falcatus Two-stage cultivation Nutrient starvation Lipid Energy 

References

  1. 1.
    Razeghifard, R. (2013). Photosynthesis Research, 117, 207–219.CrossRefGoogle Scholar
  2. 2.
    Chisti, Y. (2008). Trends in Biotechnology, 26, 126–131.CrossRefGoogle Scholar
  3. 3.
    Sialve, B., Bernet, N., & Bernard, O. (2009). Biotechnology Advances, 27, 409–416.CrossRefGoogle Scholar
  4. 4.
    Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae. Close-out report. Golden: National Renewable Energy Lab, Department of Energy.CrossRefGoogle Scholar
  5. 5.
    Griffiths, M. J., & Harrison, S. T. L. (2009). Journal of Applied Phycology, 21, 493–507.CrossRefGoogle Scholar
  6. 6.
    Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Plant Journal, 54, 621–639.CrossRefGoogle Scholar
  7. 7.
    Chen, F., & Johns, M. R. (1991). Journal of Applied Phycology, 3, 203–209.CrossRefGoogle Scholar
  8. 8.
    Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Enzyme and Microbial Technology, 27, 631–635.CrossRefGoogle Scholar
  9. 9.
    Solovchenko, A. E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., & Merzlyak, M. N. (2008). Journal of Applied Phycology, 20, 245–251.CrossRefGoogle Scholar
  10. 10.
    Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Applied Microbiology and Biotechnology, 81, 629–636.CrossRefGoogle Scholar
  11. 11.
    Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Biotechnology and Bioengineering, 102, 100–112.CrossRefGoogle Scholar
  12. 12.
    Liang, K., Zhang, Q., Gu, M., & Cong, W. (2013). Journal of Applied Phycology, 25, 311–318.CrossRefGoogle Scholar
  13. 13.
    Harun, R., Danquah, M. K., & Forde, G. M. (2010). Journal of Chemical Technology and Biotechnology, 85, 199–203.Google Scholar
  14. 14.
    Torri, C., Garcia Alba, L., Samorì, C., Fabbri, D., & Brilman, D. W. F. (2011). Energy & Fuels, 26, 658–671.CrossRefGoogle Scholar
  15. 15.
    Miao, X., Wu, Q., & Yang, C. (2004). Journal of Analytical and Applied Pyrolysis, 71, 855–863.CrossRefGoogle Scholar
  16. 16.
    Thangalazhy-Gopakumar, S., Adhikari, S., Chattanathan, S. A., & Gupta, R. B. (2012). Bioresource Technology, 118, 150–157.CrossRefGoogle Scholar
  17. 17.
    Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Journal of Biotechnology, 141, 31–41.CrossRefGoogle Scholar
  18. 18.
    Huntley, M., & Redalje, D. (2007). Mitigation and Adaptation Strategies for Global Change, 12, 573–608.CrossRefGoogle Scholar
  19. 19.
    Prathima Devi, M., Venkata Subhash, G., & Venkata Mohan, S. (2012). Renewable Energy, 43, 276–283.CrossRefGoogle Scholar
  20. 20.
    Kleinegris, D. M. M., Janssen, M., Brandenburg, W. A., & Wijffels, R. H. (2011). Biotechnology Advances, 29, 502–507.CrossRefGoogle Scholar
  21. 21.
    Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Pereira, S. A., Druzian, J. I., de Souza, C. O., Vich, D. V., de Carvalho, G. C., & Nascimento, M. A. (2013). Bioenergy Research, 6, 1–13.CrossRefGoogle Scholar
  22. 22.
    Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E., & Herrera, L. (1998). Hydrobiologia, 377, 147–159.CrossRefGoogle Scholar
  23. 23.
    APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public Health Association.Google Scholar
  24. 24.
    Takagi, M., Karseno, & Yoshida, T. (2006). Journal of Bioscience and Bioengineering, 101, 223–226.CrossRefGoogle Scholar
  25. 25.
    Wiltshire, K. H., Boersma, M., Möller, A., & Buhtz, H. (2000). Aquatic Ecology, 34, 119–126.CrossRefGoogle Scholar
  26. 26.
    Chen, W., Zhang, C., Song, L., Sommerfeld, M., & Hu, Q. (2009). Journal of Microbiological Methods, 77, 41–47.CrossRefGoogle Scholar
  27. 27.
    De La Jara, A., Mendoza, H., Martel, A., Molina, C., Nordströn, L., De La Rosa, V., & Díaz, R. (2003). Journal of Applied Phycology, 15, 433–438.CrossRefGoogle Scholar
  28. 28.
    Chen, W., Sommerfeld, M., & Hu, Q. (2011). Bioresource Technology, 102, 135–141.CrossRefGoogle Scholar
  29. 29.
    Verhulst, P. F. (1838). Correspondance mathématique et physique. 10, 113–121.Google Scholar
  30. 30.
    Lasdon, L. S., Waren, A. D., Jain, A., & Ratner, M. (1978). Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software, 4, 34–50.CrossRefGoogle Scholar
  31. 31.
    Everit, B. S., & Skrondal, A. (2010). The Cambridge dictionary of statistics (4th ed.). Cambridge: Cambridge University.CrossRefGoogle Scholar
  32. 32.
    Callejón-Ferre, A. J., Velázquez-Martí, B., López-Martínez, J. A., & Manzano-Agugliaro, F. (2011). Renewable and Sustainable Energy Reviews, 15, 948–955.CrossRefGoogle Scholar
  33. 33.
    Kilham, S. S., Kreeger, D. A., Goulden, C. E., & Lynn, S. G. (1997). Freshwater Biology, 38, 591–596.CrossRefGoogle Scholar
  34. 34.
    Wolff, L., Flemming, J., Schmitz, R., Gröger, K., Goso, C., & Müller-Goymann, C. C. (2009). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339, 82–93.CrossRefGoogle Scholar
  35. 35.
    Bhatia, S., Mohr, A., Mathur, D., Parmar, V. S., Haag, R., & Prasad, A. K. (2011). Biomacromolecules, 12, 3487–3498.CrossRefGoogle Scholar
  36. 36.
    Passow, U. (2002). Progress in Oceanography, 55, 287–333.CrossRefGoogle Scholar
  37. 37.
    Myklestad, S. (1977). Journal of Experimental Marine Biology and Ecology, 29, 161–179.CrossRefGoogle Scholar
  38. 38.
    Ding, Y. X., Hung, C. C., Santschi, P. H., Verdugo, P., & Chin, W. C. (2009). Terrestrial, Atmospheric and Oceanic Sciences, 20, 741–747.CrossRefGoogle Scholar
  39. 39.
    Chen, C. S., Anaya, J. M., Zhang, S., Spurgin, J., Chuang, C. Y., Xu, C., Miao, A. J., Chen, E. Y. T., Schwehr, K. A., Jiang, Y., Quigg, A., Santschi, P. H., & Chin, W. C. (2011). PLoS ONE, 6(7), e21865.CrossRefGoogle Scholar
  40. 40.
    Vieira, A. A. H., & Myklestad, S. (1986). Journal of Plankton Research, 8, 985–994.CrossRefGoogle Scholar
  41. 41.
    Paulsen, B. S., Aslaksen, T., Freire-Nordi, C. S., & Vieira, A. A. H. (1998). Journal of Phycology, 34, 638–641.CrossRefGoogle Scholar
  42. 42.
    Heaven, S., Milledge, J., & Zhang, Y. (2011). Biotechnology Advances, 29, 164–167.CrossRefGoogle Scholar
  43. 43.
    Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Applied Energy, 88, 3454–3463.CrossRefGoogle Scholar
  44. 44.
    Packer, A., Li, Y., Andersen, T., Hu, Q., Kuang, Y., & Sommerfeld, M. (2011). Bioresource Technology, 102, 111–117.CrossRefGoogle Scholar
  45. 45.
    Fulke, A. B., Mudliar, S. N., Yadav, R., Shekh, A., Srinivasan, N., Ramanan, R., Krishnamurthi, K., Devi, S., & Chakrabarti, T. (2010). Bioresource Technology, 101, 8473–8476.CrossRefGoogle Scholar
  46. 46.
    Scragg, A. H., Illman, A. M., Carden, A., & Shales, S. W. (2002). Biomass and Bioenergy, 23, 67–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pablo David Álvarez-Díaz
    • 1
    Email author
  • Jesús Ruiz
    • 1
  • Zouhayr Arbib
    • 1
  • Jesús Barragán
    • 1
    • 2
  • Carmen Garrido-Pérez
    • 1
  • José Antonio Perales
    • 1
  1. 1.Environmental Technologies Department, Andalusian Center of Science and Marine Technology (CACYTMAR)Universidad de CádizPuerto RealSpain
  2. 2.Chiclana Natural S.A.M.ChiclanaSpain

Personalised recommendations