Skip to main content
Log in

Lipid Production of Microalga Ankistrodesmus falcatus Increased by Nutrient and Light Starvation in a Two-Stage Cultivation Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was to study the stimulation of lipid production on the microalga Ankistrodesmus falcatus by varying cultivation conditions during the stationary phase. The effect of three factors (presence and absence of nitrogen, phosphorus, and light) has been tested once the cultures reached the stationary phase with the aim to increase the value of the biomass for further applications. Lipid content, elemental composition, Nile red fluorescence evolution, and calorific value of microalgal biomass were studied as well as biomass growth. Biomass presented a lipid content of 36.54 % at the end of the first stage, while at the end of the second stage, the experiments with the absence of phosphorus increased their lipid content until 45.94 and 44.55 %, the first with nitrogen and light presence and the second with absence of all factors. The combination of phosphorus absence and nitrogen and light presence achieved the highest lipid productivity (20.27 mg/L/day). The two-stage strategy to culture microalgae is a feasible option to increase the economic or energetic value of biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Razeghifard, R. (2013). Photosynthesis Research, 117, 207–219.

    Article  CAS  Google Scholar 

  2. Chisti, Y. (2008). Trends in Biotechnology, 26, 126–131.

    Article  CAS  Google Scholar 

  3. Sialve, B., Bernet, N., & Bernard, O. (2009). Biotechnology Advances, 27, 409–416.

    Article  CAS  Google Scholar 

  4. Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae. Close-out report. Golden: National Renewable Energy Lab, Department of Energy.

    Book  Google Scholar 

  5. Griffiths, M. J., & Harrison, S. T. L. (2009). Journal of Applied Phycology, 21, 493–507.

    Article  CAS  Google Scholar 

  6. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Plant Journal, 54, 621–639.

    Article  CAS  Google Scholar 

  7. Chen, F., & Johns, M. R. (1991). Journal of Applied Phycology, 3, 203–209.

    Article  CAS  Google Scholar 

  8. Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Enzyme and Microbial Technology, 27, 631–635.

    Article  CAS  Google Scholar 

  9. Solovchenko, A. E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., & Merzlyak, M. N. (2008). Journal of Applied Phycology, 20, 245–251.

    Article  CAS  Google Scholar 

  10. Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Applied Microbiology and Biotechnology, 81, 629–636.

    Article  CAS  Google Scholar 

  11. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Biotechnology and Bioengineering, 102, 100–112.

    Article  CAS  Google Scholar 

  12. Liang, K., Zhang, Q., Gu, M., & Cong, W. (2013). Journal of Applied Phycology, 25, 311–318.

    Article  CAS  Google Scholar 

  13. Harun, R., Danquah, M. K., & Forde, G. M. (2010). Journal of Chemical Technology and Biotechnology, 85, 199–203.

    CAS  Google Scholar 

  14. Torri, C., Garcia Alba, L., Samorì, C., Fabbri, D., & Brilman, D. W. F. (2011). Energy & Fuels, 26, 658–671.

    Article  Google Scholar 

  15. Miao, X., Wu, Q., & Yang, C. (2004). Journal of Analytical and Applied Pyrolysis, 71, 855–863.

    Article  CAS  Google Scholar 

  16. Thangalazhy-Gopakumar, S., Adhikari, S., Chattanathan, S. A., & Gupta, R. B. (2012). Bioresource Technology, 118, 150–157.

    Article  CAS  Google Scholar 

  17. Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Journal of Biotechnology, 141, 31–41.

    Article  CAS  Google Scholar 

  18. Huntley, M., & Redalje, D. (2007). Mitigation and Adaptation Strategies for Global Change, 12, 573–608.

    Article  Google Scholar 

  19. Prathima Devi, M., Venkata Subhash, G., & Venkata Mohan, S. (2012). Renewable Energy, 43, 276–283.

    Article  CAS  Google Scholar 

  20. Kleinegris, D. M. M., Janssen, M., Brandenburg, W. A., & Wijffels, R. H. (2011). Biotechnology Advances, 29, 502–507.

    Article  CAS  Google Scholar 

  21. Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Pereira, S. A., Druzian, J. I., de Souza, C. O., Vich, D. V., de Carvalho, G. C., & Nascimento, M. A. (2013). Bioenergy Research, 6, 1–13.

    Article  CAS  Google Scholar 

  22. Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E., & Herrera, L. (1998). Hydrobiologia, 377, 147–159.

    Article  CAS  Google Scholar 

  23. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  24. Takagi, M., Karseno, & Yoshida, T. (2006). Journal of Bioscience and Bioengineering, 101, 223–226.

    Article  CAS  Google Scholar 

  25. Wiltshire, K. H., Boersma, M., Möller, A., & Buhtz, H. (2000). Aquatic Ecology, 34, 119–126.

    Article  CAS  Google Scholar 

  26. Chen, W., Zhang, C., Song, L., Sommerfeld, M., & Hu, Q. (2009). Journal of Microbiological Methods, 77, 41–47.

    Article  CAS  Google Scholar 

  27. De La Jara, A., Mendoza, H., Martel, A., Molina, C., Nordströn, L., De La Rosa, V., & Díaz, R. (2003). Journal of Applied Phycology, 15, 433–438.

    Article  Google Scholar 

  28. Chen, W., Sommerfeld, M., & Hu, Q. (2011). Bioresource Technology, 102, 135–141.

    Article  CAS  Google Scholar 

  29. Verhulst, P. F. (1838). Correspondance mathématique et physique. 10, 113–121.

  30. Lasdon, L. S., Waren, A. D., Jain, A., & Ratner, M. (1978). Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software, 4, 34–50.

    Article  Google Scholar 

  31. Everit, B. S., & Skrondal, A. (2010). The Cambridge dictionary of statistics (4th ed.). Cambridge: Cambridge University.

    Book  Google Scholar 

  32. Callejón-Ferre, A. J., Velázquez-Martí, B., López-Martínez, J. A., & Manzano-Agugliaro, F. (2011). Renewable and Sustainable Energy Reviews, 15, 948–955.

    Article  Google Scholar 

  33. Kilham, S. S., Kreeger, D. A., Goulden, C. E., & Lynn, S. G. (1997). Freshwater Biology, 38, 591–596.

    Article  CAS  Google Scholar 

  34. Wolff, L., Flemming, J., Schmitz, R., Gröger, K., Goso, C., & Müller-Goymann, C. C. (2009). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339, 82–93.

    Article  CAS  Google Scholar 

  35. Bhatia, S., Mohr, A., Mathur, D., Parmar, V. S., Haag, R., & Prasad, A. K. (2011). Biomacromolecules, 12, 3487–3498.

    Article  CAS  Google Scholar 

  36. Passow, U. (2002). Progress in Oceanography, 55, 287–333.

    Article  Google Scholar 

  37. Myklestad, S. (1977). Journal of Experimental Marine Biology and Ecology, 29, 161–179.

    Article  CAS  Google Scholar 

  38. Ding, Y. X., Hung, C. C., Santschi, P. H., Verdugo, P., & Chin, W. C. (2009). Terrestrial, Atmospheric and Oceanic Sciences, 20, 741–747.

    Article  Google Scholar 

  39. Chen, C. S., Anaya, J. M., Zhang, S., Spurgin, J., Chuang, C. Y., Xu, C., Miao, A. J., Chen, E. Y. T., Schwehr, K. A., Jiang, Y., Quigg, A., Santschi, P. H., & Chin, W. C. (2011). PLoS ONE, 6(7), e21865.

    Article  CAS  Google Scholar 

  40. Vieira, A. A. H., & Myklestad, S. (1986). Journal of Plankton Research, 8, 985–994.

    Article  CAS  Google Scholar 

  41. Paulsen, B. S., Aslaksen, T., Freire-Nordi, C. S., & Vieira, A. A. H. (1998). Journal of Phycology, 34, 638–641.

    Article  CAS  Google Scholar 

  42. Heaven, S., Milledge, J., & Zhang, Y. (2011). Biotechnology Advances, 29, 164–167.

    Article  CAS  Google Scholar 

  43. Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Applied Energy, 88, 3454–3463.

    Article  CAS  Google Scholar 

  44. Packer, A., Li, Y., Andersen, T., Hu, Q., Kuang, Y., & Sommerfeld, M. (2011). Bioresource Technology, 102, 111–117.

    Article  CAS  Google Scholar 

  45. Fulke, A. B., Mudliar, S. N., Yadav, R., Shekh, A., Srinivasan, N., Ramanan, R., Krishnamurthi, K., Devi, S., & Chakrabarti, T. (2010). Bioresource Technology, 101, 8473–8476.

    Article  CAS  Google Scholar 

  46. Scragg, A. H., Illman, A. M., Carden, A., & Shales, S. W. (2002). Biomass and Bioenergy, 23, 67–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo David Álvarez-Díaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Díaz, P.D., Ruiz, J., Arbib, Z. et al. Lipid Production of Microalga Ankistrodesmus falcatus Increased by Nutrient and Light Starvation in a Two-Stage Cultivation Process. Appl Biochem Biotechnol 174, 1471–1483 (2014). https://doi.org/10.1007/s12010-014-1126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1126-5

Keywords

Navigation