Skip to main content

Advertisement

Log in

Expression Profiling of Bioactive Genes from Moringa oleifera

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plants are under constant assault by biotic and abiotic agents. When an elicitor is prologued, an immense reprogramming of plant gene expression and defense responses are initiated, which could be a natural source for potential drug development and insertional mutagenesis. In this regard, differential expression analysis of a medicinal plant Moringa oleifera was performed for bioactive genes at seedling stage, using differential display-RT-PCR technique. Infected seedlings with a fungus Fusarium solani collected at different time intervals, showed a massive change in their gene expression profile. The data analysis revealed that at least 150 pathogen-induced and about 60 suppressed genes were differentially expressed at 8-h postinoculation of the biotic stress. Fifty-five selective genes were disunited and reamplified. Sequence analysis of these potential genes illustrated that these genes had properties of some induced peroxidase mRNA, cell proliferation, others were mitogen activated protein kinases, ribosomal protein genes, defense regulating genes, and a few also had structural properties. Further studies about the utility of these genes in plant metabolism could assist to develop improved transgenic breeds with enhanced value of infection tolerance not only of M. oleifera but of other cultivars also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dwivedi, S., & Dwivedi, N. (2012). International Journal of Environmental Sciences, 3, 1.

    Google Scholar 

  2. Dodds, P. N., & Rathjen, J. P. (2010). Nature Reviews Genetics, 11, 539–548.

    Article  CAS  Google Scholar 

  3. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., & Ellis, J. (2012). Molecular Plant Pathology, 13, 414–430.

    Article  Google Scholar 

  4. Huynh, Q., Borgmeyer, J., Smith, C., Bell, L., & Shah, D. (1996). Biochemistry Journal, 316, 723–727.

    CAS  Google Scholar 

  5. Falak, S., & Jamil, A. (2013). Applied Biochemistry & Biotechnology, 170, 1472–1481.

    Article  CAS  Google Scholar 

  6. Jabeen, R., Shahid, M., Jamil, A., & Ashraf, M. (2008). Pakistan Journal Botany, 40, 1349–1358.

    Google Scholar 

  7. Penninckx, I., Eggermont, K., Terras, F., Thomma, B., De Samblanx, G. W., Buchala, A., Métraux, J.-P., Manners, J. M., & Broekaert, W. F. (1996). The Plant Cell Online, 8, 2309–2323.

    Article  CAS  Google Scholar 

  8. Jamil, A., Shahid, M., Khan, M. & Ashraf, M. (2007). Pakistan Journal of Botany, 39.

  9. Lepka, P., Stitt, M., Moll, E., & Seemüller, E. (1999). Physiological & Molecular Plant Pathology, 55, 59–68.

    Article  CAS  Google Scholar 

  10. De Luca, V., Capasso, C., Capasso, A., Pastore, M., & Carginale, V. (2011). Molecular Biology Reports, 38, 2993–3000.

    Article  Google Scholar 

  11. Lee, S. C., Lim, M. H., Kim, J. A., Lee, S. I., Kim, J. S., Jin, M., Kwon, S. J., Mun, J. H., Kim, Y.-K., & Kim, H. U. (2008). Molecular Cells, 26, 595–605.

    CAS  Google Scholar 

  12. Ray, R., Ghosh, A., Bera, A., Dutta, N., Chattopadhyay, D., & Chakrabarti, K. (2011). Physiological & Molecular Plant Pathology, 76, 59–66.

    Article  Google Scholar 

  13. Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. (2011). Critical Reviews in Plant Sciences, 30, 435–458.

    Article  Google Scholar 

  14. Bilgin, D. D., Zavala, J. A., Zhu, J., Clough, S. J., Ort, D. R., & DeLUCIA, E. (2010). Plant, Cell & Environment, 33, 1597–1613.

    Article  CAS  Google Scholar 

  15. Saibo, N. J., Lourenço, T., & Oliveira, M. M. (2009). Annals of Botany, 103, 609–623.

    Article  CAS  Google Scholar 

  16. Ellis, J. G., Dodds, P. N., & Lawrence, G. J. (2007). Annual Review of Phytopathology, 45, 289–306.

    Article  CAS  Google Scholar 

  17. Mohr, U., Lange, J., Boller, T., Wiemken, A., & Vögeli-Lange, R. E. G. I. N. A. (1998). New Phytologist, 138(4), 589–598.

    Article  CAS  Google Scholar 

  18. Short, J. M., Fernandez, J. M., Sorge, J. A., & Huse, W. D. (1988). Nucleic Acids Research, 16, 7583–7600.

    Article  CAS  Google Scholar 

  19. Liang, P., & Pardee, A. B. (1992). Science, 257, 967–971.

    Article  CAS  Google Scholar 

  20. Debouck, C. (1995). Current Opinion in Biotechnology, 6, 597–599.

    Article  CAS  Google Scholar 

  21. Brenner, S. E., Chothia, C., & Hubbard, T. J. (1998). Proceedings of the National Academy of Sciences, 95, 6073–6078.

    Article  CAS  Google Scholar 

  22. Suarez, M., Haenni, M., Canarelli, S., Fisch, F., Chodanowski, P., Servis, C., Michielin, O., Freitag, R., Moreillon, P., & Mermod, N. (2005). Antimicrobial Agents & Chemotherapy, 49, 3847–3857.

    Article  CAS  Google Scholar 

  23. Shahid, M., Khan, M., & Jamil, A. (2007). Planta Medica, 73, P-170.

    Article  Google Scholar 

  24. Kwaik, Y. A., & Pederson, L. L. (1996). Molecular Microbiology, 21, 543–556.

    Article  CAS  Google Scholar 

  25. Ragno, S., Estrada-Garcia, I., Butler, R., & Colston, M. J. (1998). Infection & Immunity, 66, 3952–3958.

    CAS  Google Scholar 

  26. Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson, I. W., Somerville, S. C., & Maclean, D. J. (2003). Plant Physiology, 132, 999–1010.

    Article  CAS  Google Scholar 

  27. Wojtaszek, P. A. (1997). Biochemistry Journal, 322, 681–692.

    CAS  Google Scholar 

  28. Chittoor, J. M., Leach, J. E. & White, F. F. (1999). Pathogenesis-related proteins in plants, 171–193.

  29. Hilaire, E., Young, S. A., Willard, L. H., McGee, J. D., Sweat, T., Chittoor, J., Guikema, J. A., & Leach, J. E. (2001). Molecular Plant-Microbe Interactions, 14, 1411–1419.

    Article  CAS  Google Scholar 

  30. Do, H. M., Hong, J. K., Jung, H. W., Kim, S. H., Ham, J. H., & Hwang, B. K. (2003). Molecular Plant-Microbe Interactions, 16, 196–205.

    Article  CAS  Google Scholar 

  31. Martinez, C., Geiger, J.P., Bresson, E., Daniel, J.F., Dai, G., Andray, A. & Nicole, M. (1996). Plant Peroxidase: Biochemistry & Physiology O. Obinger, U. Burner, R. Ebermann, C. Penel, & H. Greppin, eds. University of Geneva, Switzerl& & University of Vienna, Austria, 327–332

  32. Reimers, P. J., Guo, A., & Leach, J. E. (1992). Plant Physiology, 99, 1044–1050.

    Article  CAS  Google Scholar 

  33. Williams, M. E., & Sussex, I. M. (1995). The Plant Journal, 8, 65–76.

    Article  CAS  Google Scholar 

  34. Ferrari, S., Bandi, H., Hofsteenge, J., Bussian, B., & Thomas, G. (1991). Journal of Biological Chemistry, 266, 22770–22775.

    CAS  Google Scholar 

  35. Traugh, J., & Pendergast, A. (1986). Progress in Nucleic Acid Research & Molecular Biology, 33, 195–230.

    Article  CAS  Google Scholar 

  36. Matsubayashi, Y., & Sakagami, Y. (2006). Annual Review of Plant Biology, 57, 649–674.

    Article  CAS  Google Scholar 

  37. Barr, P. J. (1991). Cell, 66, 1–3.

    Article  CAS  Google Scholar 

  38. Liu, J. X., Srivastava, R., Che, P., & Howell, S. H. (2007). The Plant Journal, 51, 897–909.

    Article  CAS  Google Scholar 

  39. Chinnusamy, V., Schumaker, K., & Zhu, J. K. (2004). Journal of Experimental Botany, 55, 225–236.

    Article  CAS  Google Scholar 

  40. Teige, M., Scheikl, E., Eulgem, T., Dóczi, R., Ichimura, K., Shinozaki, K., Dangl, J. L., & Hirt, H. (2004). Molecular Cell, 15, 141–152.

    Article  CAS  Google Scholar 

  41. Ishitani, M., Liu, J., Halfter, U., Kim, C.-S., Shi, W., & Zhu, J.-K. (2000). The Plant Cell Online, 12, 1667–1677.

    Article  CAS  Google Scholar 

  42. Halfter, U., Ishitani, M., & Zhu, J. K. (2000). Proceedings of the National Academy of Sciences, 97, 3735–3740.

    Article  CAS  Google Scholar 

  43. Qiu, Q.-S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J.-K. (2002). Proceedings of the National Academy of Sciences, 99, 8436–8441.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work was conducted under a research grant (Project No. 20–1379) from Higher Education Govt. of Pakistan and International Foundation for Science Sweden/OPCW (No. F/3966-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Jamil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabeen, R., Mustafa, G., ul Abdin, Z. et al. Expression Profiling of Bioactive Genes from Moringa oleifera . Appl Biochem Biotechnol 174, 657–666 (2014). https://doi.org/10.1007/s12010-014-1122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1122-9

Keywords

Navigation