Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1299–1308 | Cite as

Suitable Technological Conditions for Enzymatic Hydrolysis of Waste Paper by Novozymes® Enzymes NS50013 and NS50010

  • Vladimir BrummerEmail author
  • Pavel Skryja
  • Tomas Jurena
  • Viliam Hlavacek
  • Petr Stehlik


Waste paper belongs to a group of quantitatively the most produced waste types. Enzymatic hydrolysis is becoming a suitable way to treat this type of waste and at the same time, to produce a valuable liquid biofuel, because reducing sugars solutions that are formed during the process of saccharification can be a precursor for following or simultaneous fermentation. If it will be possible to make the enzymatic hydrolysis of the waste paper economically viable, it could serve as one of the new ways to lower the dependence of the transport sector on oil in the future. Only several studies comparing the enzymatic hydrolysis of different waste papers were performed in the past; they are summarized in this manuscript. In our experimental trials, suitable technological conditions for waste paper enzymatic hydrolysis using enzymes from Novozymes® biomass kit: enzymes NS50013 and NS50010 were investigated. The following enzymatic hydrolysis parameters in laboratory scale trials were verified on high cellulose content substrates–filter paper and cellulose pulp: type of buffer, pH, temperature, concentration of the substrate, loading of the enzyme and rate of stirring.


Enzymatic hydrolysis Bioethanol Waste paper Novozymes Technological conditions Enzymes Cellulase Cellulose NS50013 NS50010 



This work is an output of the research and scientific activities of NETME Centre, regional R&D centre built with the financial support from the Operational Programme Research and Development for Innovations within the project NETME Centre (New Technologies for Mechanical Engineering), Reg. No. CZ.1.05/2.1.00/01.0002 and, in the follow-up sustainability stage, supported through NETME CENTRE PLUS (LO1202) by financial means from the Ministry of Education, Youth and Sports under the “National Sustainability Programme I”.


  1. 1.
    van Zyl, W. H., Chimphango, A. F. A., den Haan, R., Gorgens, J. F., & Chirwa, P. W. C. (2011). Interface Focus, 1(2), 196–211.CrossRefGoogle Scholar
  2. 2.
    Hall, J., Matos, S., Severino, L., & Beltrão, N. (2009). Journal of Cleaner Production, 17, S77–S85.CrossRefGoogle Scholar
  3. 3.
    Baumgärtner, S., & Winkler, R. (2003). Ecological Economics, 47(23), 183–195.CrossRefGoogle Scholar
  4. 4.
    Wang, S., Su, P., Ding, F., & Yang, Y. (2013). Journal of Molecular Catalysis B: Enzymatic, 89, 35–40.CrossRefGoogle Scholar
  5. 5.
    Chen, H., Venditti, R. A., Jameel, H., & Park, S. (2012). Applied Biochemistry and Biotechnology, 166(5), 1121–1136.CrossRefGoogle Scholar
  6. 6.
    Brummer, V., Jurena, T., Hlavacek, V., Omelkova, J., Bebar, L., Gabriel, P., & Stehlik, P. (2014). Bioresource Technology, 152, 543–547.CrossRefGoogle Scholar
  7. 7.
    Xin, F., Geng, A., Chen, M. L., & Gum, M. J. M. (2010). Applied Biochemistry and Biotechnology, 162(4), 1052–1064.CrossRefGoogle Scholar
  8. 8.
    Chu, K. H., & Feng, X. (2013). Process Safety and Environmental Protection, 91(12), 123–130.CrossRefGoogle Scholar
  9. 9.
    Park, I., Kim, I., Kang, K., Sohn, H., Rhee, I., Jin, I., & Jang, H. (2010). Process Biochemistry, 45(4), 487–492.CrossRefGoogle Scholar
  10. 10.
    Kádár, Z., Szengyel, Z., & Réczey, K. (2004). Industrial Crops and Products, 20(1), 103–110.CrossRefGoogle Scholar
  11. 11.
    Marques, S., Alves, L., Roseiro, J. C., & Gírio, F. M. (2008). Biomass and Bioenergy, 32(5), 400–406.CrossRefGoogle Scholar
  12. 12.
    Wirawan, F., Cheng, C.-L., Kao, W.-C., Lee, D.-J., & Chang, J.-S. (2012). Applied Energy, 100, 19–26.CrossRefGoogle Scholar
  13. 13.
    Szczodrak, J., & Fiedurek, J. (1996). Biomass and Bioenergy, 10(56), 367–375.CrossRefGoogle Scholar
  14. 14.
    Rehm ., H. J. (1998). Biotechnology (2nd ed.). Weinheim [u.a.]: VCH.Google Scholar
  15. 15.
    Vásquez, M. P., Silva, J. N. C., Souza, M. B., & Pereira, N. (2007). Applied Biochemistry and Biotechnology, 137140(112), 141–153.Google Scholar
  16. 16.
    Sun, Y., Cheng, J., & Lynd, L. R. (2002). Bioresource Technology, 83(1), 1–52.CrossRefGoogle Scholar
  17. 17.
    van Wyk, J. P. H. (1998). Bioresource Technology, 63(3), 275–277.CrossRefGoogle Scholar
  18. 18.
    van Wyk, J. P. H. (1999). Bioresource Technology, 69(3), 269–273.CrossRefGoogle Scholar
  19. 19.
    van Wyk, J. P. H. (1999). Biomass and Bioenergy, 16(3), 239–242.CrossRefGoogle Scholar
  20. 20.
    van Wyk, J. P. H., & Mohulatsi, M. (2001). Australasian Biotechnology, 5(11), 38–39.Google Scholar
  21. 21.
    van Wyk, J. P. H., & Mohulatsi, M. (2003). Bioresource Technology, 86(1), 21–23.CrossRefGoogle Scholar
  22. 22.
    Park, E. Y., Ikeda, Y., & Okuda, N. (2002). Biotechnology and Bioprocess Engineering, 7(5), 268–274.CrossRefGoogle Scholar
  23. 23.
    Wang, L., Templer, R., & Murphy, R. J. (2012). Applied Energy, 99, 23–31.CrossRefGoogle Scholar
  24. 24.
    Zheng, Y., Pan, Z., Zhang, R., Labavitch, J. M., Wang, D., Teter, S. A., & Jenkins, B. M. (2007). Applied Biochemistry and Biotechnology, 137140(112), 423–435.Google Scholar
  25. 25.
    Somogyi, M. (1952). Journal of Biological Chemistry, 200, 245–245.Google Scholar
  26. 26.
    Modenbach, A. A., & Nokes, S. E. (2013). Biomass and Bioenergy, 56, 526–544.CrossRefGoogle Scholar
  27. 27.
    Ballesteros, M., Oliva, J. M., Manzanares, P., Negro, M. J., & Ballesteros, I. (2002). World Journal of Microbiology and Biotechnology, 18(6), 559–561.CrossRefGoogle Scholar
  28. 28.
    Ludwig, D., Buchmann, M., Hirth, T., Rupp, S., & Zibek, S. (2014). Applied Biochemistry and Biotechnology, 172(3), 1699–1713.CrossRefGoogle Scholar
  29. 29.
    Huang, R., Su, R., Qi, W., & He, Z. (2011). BioEnergy Research, 4(4), 225–245.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vladimir Brummer
    • 1
    Email author
  • Pavel Skryja
    • 1
  • Tomas Jurena
    • 1
  • Viliam Hlavacek
    • 2
  • Petr Stehlik
    • 1
  1. 1.Institute of Process and Environmental EngineeringBrno University of TechnologyBrnoCzech Republic
  2. 2.Institute of Food Science and BiotechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations