Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1403–1419 | Cite as

Bioremediation of Distillery Sludge into Soil-Enriching Material Through Vermicomposting with the Help of Eisenia fetida

  • Jaswinder SinghEmail author
  • Arvinder KaurEmail author
  • Adarsh Pal Vig


The aim of the present study was bioremediation of distillery sludge into a soil-enriching material. It was mixed with a complementary waste, cattle dung, and subjected to vermicomposting with (V) and without (T, control) Eisenia fetida in the ratio of 0:100 % (V1, T1), 10:90 (V2, T2), 25:75 (V3, T3), 50:50 (V4, T4), 75:25 (V5, T5) and 100:0 % (V6, T6), respectively. Survival rate, growth rate, onset of maturity, cocoon production and population build-up increased with increasing ratio of cattle dung. Maximum mortality of earthworm was observed in V6 mixture. On the basis of response surface design, the concentration of sludge giving highest number of worms, cocoons and hatchlings came out to be 21.11, 24.51 and 17.19 %, respectively. Nitrogen, phosphorus, sodium and pH increased during vermicomposting but decreased in the products without earthworm and there was increase in the contents of transition metals in the products of both the techniques. However, organic carbon, electrical conductivity and potassium showed an opposite trend.


Vermicomposting Eisenia fetida Organic sludge Spent wash Distillery sludge Industrial waste 



This work was financially supported by the Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India.


  1. 1.
    Ramana, S., Biswas, A. K., Singh, A. B., & Yadava, R. B. R. (2001). Relative efficacy of different distillery effluents on growth, nitrogen fixation and yield of groundnut. Bioresource Technology, 81, 117–121.CrossRefGoogle Scholar
  2. 2.
    Lung, A. J., Lin, C. M., Kim, J. M., Marshall, M. R., Nordstedt, R., Thompson, N. P., & Wei, C. I. (2001). Destruction of Escherichia coli O157:H7 and Salmonella Enteritidis in cow manure composting. Journal of Food Protection, 64, 1309–1314.CrossRefGoogle Scholar
  3. 3.
    Martin-Gil, J., Navas-Garcia, L. M., Gomez-Sobrino, E., Correa-Guimaraes, A., Hernandez-Navarro, S., Sanchez-Bascones, M., & Ramos-Sanchez, M. C. (2007). Composting and vermicomposting experiences in the treatments and bioconversion of asphaltens from the prestige oil spill. Bioresource Technology, 99, 1821–1829.CrossRefGoogle Scholar
  4. 4.
    Nelson, D. W., & Sommers, L. E. (1996). In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Method of soil analysis (pp. 539–579). Madison: American Society of Agronomy.Google Scholar
  5. 5.
    Bremner, J. M., & Mulvaney, R. G. (1982). Nitrogen total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (pp. 575–624). Madison: American Society of Agronomy.Google Scholar
  6. 6.
    John, M. K. (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Science, 109, 214–220.CrossRefGoogle Scholar
  7. 7.
    Suthar, S. (2008). Bioremediation of aerobically treated distillery sludge mixed with cow dung by using an epigeic earthworm Eisenia fetida. The Environmentalist, 28, 76–84.Google Scholar
  8. 8.
    Edwards, C. A., & Edward, C. A. (1998). The use of earthworms in the breakdown and management of organic wastes. In C. A. Edward (Ed.), Earthworm ecology (pp. 327–354). Boca Raton: Lewis.Google Scholar
  9. 9.
    Barne, A. Z., & Striganova, B. R. (2005). Evaluation of production parameters of earthworms Eiseniella tetraedera in laboratory culture. Biology Bulletin, 32, 323–326.Google Scholar
  10. 10.
    Lavelle, P. (1981). Strategies de reproduction chez les vers de terre. Acta Oecologica, 21, 17–133.Google Scholar
  11. 11.
    Jadia, C. D., & Fulekar, M. H. (2008). Vermicomposting of vegetable waste: a bio-physicochemical process based on hydro-operating bioreactor. African Journal of Biotechnology, 7, 3723–3730.Google Scholar
  12. 12.
    Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils (13th ed.). New Delhi: Prentice Hall of India. 960 pp.Google Scholar
  13. 13.
    Beck-friis, B., Smars, S., Jonsson, H., & Kirchmann, H. (2001). SE-Structures and Environment: Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. Journal of Agricultural Engineering Research, 78, 423–430.CrossRefGoogle Scholar
  14. 14.
    Singh, J., Kaur, A., Vig, A. P., & Rup, P. J. (2010). Role of Eisenia fetida in rapid recycling of nutrients from biosludge of beverage industry. Ecotoxicology and Environmental Safety, 73, 430–435.CrossRefGoogle Scholar
  15. 15.
    Khawairakpam, M., & Bhargava, R. (2009). Vermitechnology for sewage sludge recycling. Journal of Hazardous Materials, 161, 948–954.CrossRefGoogle Scholar
  16. 16.
    Kaur, A., Singh, J., Vig, A. P., Dhaliwal, S. S., & Rup, P. J. (2010). Cocomposting with and without Eisenia fetida for conversion of toxic paper mill sludge to a soil conditioner. Bioresource Technology, 101, 8192–8198.CrossRefGoogle Scholar
  17. 17.
    Vig, A. P., Singh, J., Wani, S. H., & Dhaliwal, S. S. (2011). Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny). Bioresource Technology, 102, 7941–7945.CrossRefGoogle Scholar
  18. 18.
    Guest, C. A., Johnston, C. T., King, J. J., Allenman, J. J., Tishmack, J. K., & Norton, L. D. (2001). Chemical characterisation of synthetic soil from composting coal combustion and pharmaceutical by- products. Journal of Environmental Quality, 80, 246–253.CrossRefGoogle Scholar
  19. 19.
    Tognetti, C., Mazzarino, M. J., & Lao, F. (2007). Improving the quality of municipal organic waste compost. Bioresource Technology, 98, 1067–1076.CrossRefGoogle Scholar
  20. 20.
    Cabrera, M. L., Kissel, D. E., & Vigil, M. F. (2005). Nitrogen mineralization from organic residues: Research opportunities. Journal of Environmental Quality, 34, 75–79.CrossRefGoogle Scholar
  21. 21.
    Garg, V. K., & Kaushik, P. (2005). Effect of textile wastewater on different cultivar of wheat. Bioresource Technology, 96, 1189–1193.CrossRefGoogle Scholar
  22. 22.
    Tripathi, G., & Bhardwaj, P. (2004). Comparative studies on biomass production, life cycles and composting efficiency of Eisenia foetida (Savigny) and Lampito mauritii (Kinberg). Bioresource Technology, 92, 275–278.Google Scholar
  23. 23.
    Alexander, M. (1983). Introduction to soil microbiology (2nd ed., p. 467). New Delhi: Wiley Eastern limited.Google Scholar
  24. 24.
    Krishnamoorthy, R. V. (1990). Mineralization of phosphorous by faecal phosphatase of some earthworms of Indian tropica. Proceedings of the Indian Academy of Sciences, 99, 509–518.Google Scholar
  25. 25.
    Orozco, F. H., Cegarra, J., Trujillo, L. M., & Roig, A. (1996). Vermicomposting of coffee pulp using the earthworm Eisenia fetida: Effects on C and N contents and the availability of nutrients. Biology and Fertility of Soils, 22, 162–166.CrossRefGoogle Scholar
  26. 26.
    Delgado, M., Bigeriego, M., Walter, I., & Calbo, R. (1995). Use of California red worm in sewage sludge transformation. Turrialba, 45, 33–41.Google Scholar
  27. 27.
    Deolalikar, A. V., Mitra, A., Bhattacharyee, S., & Chakraborty, S. (2005). Effect of vermicomposting process on metal content of paper mill solid waste. Journal of Environmental Science and Engineering, 47, 81–84.Google Scholar
  28. 28.
    Bhat, S. A., Singh, J., & Vig, A. P. (2013). Vermiremediation of dyeing sludge from textile mill with the help of exotic earthworm Eisenia fetida Savigny. Environmental Science and Pollution Research, 20, 5975–5982.CrossRefGoogle Scholar
  29. 29.
    Suthar, S., & Singh, S. (2008). Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Sci Total Environment, 394, 237–243.CrossRefGoogle Scholar
  30. 30.
    Selladurai, G., Anbusaravanan, N., Shyam, K. P., Kandhasamy, P., & Balamuthu, K. (2010). Recycling of distillery sludge from sugarcane industry using bioresource technology. Journal of Applied Sciences Research, 6, 218–223.Google Scholar
  31. 31.
    Romero, E., Plaza, C., Senesi, N., Nogales, R., & Polo, A. (2007). Humic acid-like fractions in raw and vermicomposted winery and distillery wastes. Geoderma, 139, 397–406.CrossRefGoogle Scholar
  32. 32.
    Madan, S., & Yadav, A. (2012). Vermicomposting of Distillery sludge with different wastes by using Eisenia fetida. Advances in Applied Science Research, 3, 3844–3847.Google Scholar
  33. 33.
    Hemalatha, B. (2012). Recycling of industrial sludge along with municipal solid waste – vermicomposting method. International Journal of Advanced Engineering Technology, 3, 71–74.Google Scholar
  34. 34.
    Suthar, S. (2008). Metal remediations from partially composted distillery sludge using composting earthworm Eisenia foetida. Journal of Environmental Monitoring, 10, 1099–1106.CrossRefGoogle Scholar
  35. 35.
    Nogales, R., Cifuentes, C., & Benitez, E. (2005). Vermicomposting of winery wastes: A labo- ratory study. Journal of Environmental Science and Health, Part B. Pesticides, Food Contaminants, and Agricultural Wastes, 40, 659–673.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ZoologyKhalsa CollegeAmritsarIndia
  2. 2.Department of ZoologyGuru Nanak Dev UniversityAmritsarIndia
  3. 3.Department of Botanical and Environmental SciencesGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations